使用JMX监控Kafka
监控数据源
JMX RMI方式启动Broker,Consumer,Producer
-ea -Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.port=9996
通过JMX RMI方式连接
service:jmx:rmi:///jndi/rmi://127.0.0.1:9998/jmxrmi
监控数据
broker
bean name: kafka:type=kafka.SocketServerStats(每次启动都会清空这部分数据)
def getProduceRequestsPerSecond: Double
def getFetchRequestsPerSecond: Double
def getAvgProduceRequestMs: Double
def getMaxProduceRequestMs: Double
def getAvgFetchRequestMs: Double
def getMaxFetchRequestMs: Double
def getBytesReadPerSecond: Double
def getBytesWrittenPerSecond: Double
def getNumFetchRequests: Long
def getNumProduceRequests: Long
def getTotalBytesRead: Long
def getTotalBytesWritten: Long
def getTotalFetchRequestMs: Long
def getTotalProduceRequestMs: Long
bean name: kafka:type=kafka.BrokerAllTopicStat(每次启动都会清空这部分数据)
bean name: kafka:type=kafka.BrokerTopicStat.topic(每次启动都会清空这部分数据)
def getMessagesIn: Long 写入消息的数量
def getBytesIn: Long 写入的byte数量
def getBytesOut: Long 读出byte的数量
def getFailedProduceRequest: Long 失败的生产数量
def getFailedFetchRequest: Long 失败的读取操作数量
不是太重要的属性
bean name: kafka:type=kafka.LogFlushStats
def getFlushesPerSecond: Double
def getAvgFlushMs: Double
def getTotalFlushMs: Long
def getMaxFlushMs: Double
def getNumFlushes: Long
bean name: kafka:type=logs.topic-pattern
def getName: String 监控项目的名字,格式 topic+”-”+分区ID,比如 guoguo_t_1-0,guoguo_t_1-1
def getSize: Long 执久化文件的大小
def getNumberOfSegments: Int 执久化文件的数量
def getCurrentOffset: Long 基于当前写入kafka的文件的byte偏移量
def getNumAppendedMessages: Long 追加数据,每次重启清空
其它的需要监控的数据项目:
java堆(堆的内存使用情况,非堆的内存使用情况等)
GC信息(GC次数,GC总时间等)
consumer
消费者的状态
bean name: kafka:type=kafka.ConsumerStats
def getPartOwnerStats: String
比如:guoguo_t_1: [
{
0-1, // broker+分区的信息
fetchoffset: 58246, 取的offset,已经消费的offset
consumeroffset: 58246
}{ 0-0, fetchoffset: 2138747,consumeroffset: 2138747}]
def getConsumerGroup: String 消费者的组,比如guoguo_group_1
def getOffsetLag(topic: String, brokerId: Int, partitionId: Int): Long 有多少byte消息没有读取
def getConsumedOffset(topic: String, brokerId: Int, partitionId: Int): Long 已经消费了多少byte的数据
def getLatestOffset(topic: String, brokerId: Int, partitionId: Int): Long
bean name: kafka:type=kafka.ConsumerAllTopicStat (所有topic的数据的汇总,重启数据也会被清空)
kafka:type=kafka.ConsumerTopicStat.topic(重启数据也会被清空)
def getMessagesPerTopic: Long
def getBytesPerTopic: Long
bean name: kafka:type=kafka.SimpleConsumerStats
def getFetchRequestsPerSecond: Double 每秒种发起的取数据请求数
def getAvgFetchRequestMs: Double 平均取数据请求用的ms数
def getMaxFetchRequestMs: Double 最大取数据请求用的ms数
def getNumFetchRequests: Long 取数据请求的数量
def getConsumerThroughput: Double 消费者的吞吐量,字节每秒
Producer
bean name: kafka:type=kafka.KafkaProducerStats
def getProduceRequestsPerSecond: Double
def getAvgProduceRequestMs: Double
def getMaxProduceRequestMs: Double
def getNumProduceRequests: Long
bean name: kafka.producer.Producer:type=AsyncProducerStats
def getAsyncProducerEvents: Int (发出消息数量,与所有消费者的getMessagesPerTopic值相关不应太大)
def getAsyncProducerDroppedEvents: Int
Demo程序
package com.campaign.kafka import javax.management._
import kafka.log.LogStatsMBean
import kafka.network.SocketServerStatsMBean
import kafka.server.BrokerTopicStatMBean
import javax.management.openmbean.CompositeData
import java.lang.management.{MemoryUsage, GarbageCollectorMXBean}
import javax.management.remote.{JMXConnector, JMXConnectorFactory, JMXServiceURL} /**
* Created by jiaguotian on 14-1-13.
*/
15object RmiMonitor {
def main(args: Array[String]) {
val jmxUrl: JMXServiceURL = new JMXServiceURL("service:jmx:rmi:///jndi/rmi://127.0.0.1:9999/jmxrmi")
val connector: JMXConnector = JMXConnectorFactory.connect(jmxUrl)
val mBeanServerconnection: MBeanServerConnection = connector.getMBeanServerConnection val domains: Array[String] = mBeanServerconnection.getDomains
println("domains:")
for (domain <- domains) {
println("%25s: %s".format("domain", domain))
} println("-------------------------------")
val beanSet: java.util.Set[ObjectInstance] = mBeanServerconnection.queryMBeans(null, null)
val beans: Array[ObjectInstance] = beanSet.toArray(new Array[ObjectInstance](0)).sortWith((o1, o2) => o1.getClassName.compare(o2.getClassName) < 0)
for (instance <- beans) {
val objectName: ObjectName = instance.getObjectName
println("%s %s".format(instance.getClassName, objectName))
} println("-------------------------------") {
val instance: ObjectName = ObjectName.getInstance("kafka:type=kafka.SocketServerStats")
val bean: SocketServerStatsMBean = MBeanServerInvocationHandler.newProxyInstance(mBeanServerconnection,
instance,
classOf[SocketServerStatsMBean],
true)
println(instance.getCanonicalKeyPropertyListString)
println("%25s: %s".format("AvgFetchRequestMs", bean.getAvgFetchRequestMs))
println("%25s: %s".format("AvgProduceRequestMs", bean.getAvgProduceRequestMs))
println("%25s: %s".format("BytesReadPerSecond", bean.getBytesReadPerSecond))
println("%25s: %s".format("BytesWrittenPerSecond", bean.getBytesWrittenPerSecond))
println("%25s: %s".format("FetchRequestsPerSecond", bean.getFetchRequestsPerSecond))
println("%25s: %s".format("MaxFetchRequestMs", bean.getMaxFetchRequestMs))
println("%25s: %s".format("MaxProduceRequestMs", bean.getMaxProduceRequestMs))
println("%25s: %s".format("NumFetchRequests", bean.getNumFetchRequests))
println("%25s: %s".format("NumProduceRequests", bean.getNumProduceRequests))
println("%25s: %s".format("ProduceRequestsPerSecond", bean.getProduceRequestsPerSecond))
}
println("-------------------------------");
{
val objNames: java.util.Set[ObjectName] = mBeanServerconnection.queryNames(
ObjectName.getInstance("java.lang:type=Memory*"), null)
val array: Array[ObjectName] = objNames.toArray(new Array[ObjectName](0))
for (name <- array) {
val info: _root_.javax.management.MBeanInfo = mBeanServerconnection.getMBeanInfo(name)
val attrInfos: Array[_root_.javax.management.MBeanAttributeInfo] = info.getAttributes
println(name.toString)
for (info <- attrInfos) {
println(info.getName + " " + info.getType)
info.getType match {
case "javax.management.openmbean.CompositeData" =>
val attribute: AnyRef = mBeanServerconnection.getAttribute(name, info.getName)
val bean: MemoryUsage = MemoryUsage.from(attribute.asInstanceOf[CompositeData])
println("%25s: %s".format("Committed", bean.getCommitted()))
println("%25s: %s".format("Init", bean.getInit()))
println("%25s: %s".format("Max", bean.getMax()))
println("%25s: %s".format("Used", bean.getUsed()))
case _ =>
}
}
}
}
println("-------------------------------") {
val objNames: java.util.Set[ObjectName] = mBeanServerconnection.queryNames(
ObjectName.getInstance("java.lang:type=GarbageCollector,name=*"), null)
val array: Array[ObjectName] = objNames.toArray(new Array[ObjectName](0))
for (next <- array) {
val bean: GarbageCollectorMXBean = MBeanServerInvocationHandler.newProxyInstance(mBeanServerconnection, next, classOf[GarbageCollectorMXBean], true)
println("%25s: %s".format("Name", bean.getName()))
println("%25s: %s".format("MemoryPoolNames", bean.getMemoryPoolNames()))
println("%25s: %s".format("ObjectName", bean.getObjectName()))
println("%25s: %s".format("Class", bean.getClass()))
println("%25s: %s".format("CollectionCount", bean.getCollectionCount()))
println("%25s: %s".format("CollectionTime", bean.getCollectionTime()))
}
} val TypeValuePattern = "(.*):(.*)=(.*)".r
val kafka1: ObjectName = new ObjectName("kafka", "type", "*")
val kafka: java.util.Set[ObjectInstance] = mBeanServerconnection.queryMBeans(kafka1, null)
val kafkas: Array[ObjectInstance] = kafka.toArray(new Array[ObjectInstance](0)).sortWith((o1, o2) => o1.getClassName.compare(o2.getClassName) < 0)
for (instance <- kafkas) {
val objectName: ObjectName = instance.getObjectName
println(instance.getClassName + " " + objectName) objectName.getCanonicalName match {
case TypeValuePattern(domain, t, v) =>
instance.getClassName match {
case "kafka.log.LogStats" =>
val oName: ObjectName = new ObjectName(domain, t, v)
val bean: LogStatsMBean = MBeanServerInvocationHandler.newProxyInstance(mBeanServerconnection, oName, classOf[LogStatsMBean], true)
println("%25s: %s".format("CurrentOffset", bean.getCurrentOffset))
println("%25s: %s".format("Name", bean.getName()))
println("%25s: %s".format("NumAppendedMessages", bean.getNumAppendedMessages))
println("%25s: %s".format("NumberOfSegments", bean.getNumberOfSegments))
println("%25s: %s".format("Size", bean.getSize()))
case "kafka.message.LogFlushStats" =>
val oName: ObjectName = new ObjectName(domain, t, v)
val bean: LogStatsMBean = MBeanServerInvocationHandler.newProxyInstance(mBeanServerconnection, oName, classOf[LogStatsMBean], true)
println("%25s: %s".format("CurrentOffset", bean.getCurrentOffset))
println("%25s: %s".format("Name", bean.getName()))
println("%25s: %s".format("NumAppendedMessages", bean.getNumAppendedMessages))
println("%25s: %s".format("NumberOfSegments", bean.getNumberOfSegments))
println("%25s: %s".format("Size", bean.getSize()))
case "kafka.network.SocketServerStats" =>
val oName: ObjectName = new ObjectName(domain, t, v)
val bean: SocketServerStatsMBean = MBeanServerInvocationHandler.newProxyInstance(mBeanServerconnection, oName, classOf[SocketServerStatsMBean], true)
println("%25s: %s".format("BytesReadPerSecond", bean.getBytesReadPerSecond))
println("%25s: %s".format("AvgFetchRequestMs", bean.getAvgFetchRequestMs))
println("%25s: %s".format("AvgProduceRequestMs", bean.getAvgProduceRequestMs))
println("%25s: %s".format("BytesWrittenPerSecond", bean.getBytesWrittenPerSecond))
println("%25s: %s".format("FetchRequestsPerSecond", bean.getFetchRequestsPerSecond))
println("%25s: %s".format("MaxFetchRequestMs", bean.getMaxFetchRequestMs))
println("%25s: %s".format("MaxProduceRequestMs", bean.getMaxProduceRequestMs))
println("%25s: %s".format("NumFetchRequests", bean.getNumFetchRequests))
println("%25s: %s".format("NumProduceRequests", bean.getNumProduceRequests))
println("%25s: %s".format("ProduceRequestsPerSecond", bean.getProduceRequestsPerSecond))
println("%25s: %s".format("TotalBytesRead", bean.getTotalBytesRead))
case "kafka.server.BrokerTopicStat" =>
val oName: ObjectName = new ObjectName(domain, t, v)
val bean: BrokerTopicStatMBean = MBeanServerInvocationHandler.newProxyInstance(mBeanServerconnection, oName, classOf[BrokerTopicStatMBean], true)
println("%25s: %s".format("BytesIn", bean.getBytesIn))
println("%25s: %s".format("BytesOut", bean.getBytesOut))
println("%25s: %s".format("FailedFetchRequest", bean.getFailedFetchRequest))
println("%25s: %s".format("FailedProduceRequest", bean.getFailedProduceRequest))
println("%25s: %s".format("MessagesIn", bean.getMessagesIn))
case _ =>
}
case _ =>
}
}
}
}
输出结果
domains:
domain: JMImplementation
domain: com.sun.management
domain: kafka
domain: java.nio
domain: java.lang
domain: java.util.logging
-------------------------------
com.sun.management.UnixOperatingSystem java.lang:type=OperatingSystem
javax.management.MBeanServerDelegate JMImplementation:type=MBeanServerDelegate
kafka.log.LogStats kafka:type=kafka.logs.guoguo_t_1-1
kafka.log.LogStats kafka:type=kafka.logs.guoguo_t_1-0
kafka.network.SocketServerStats kafka:type=kafka.SocketServerStats
kafka.utils.Log4jController kafka:type=kafka.Log4jController
sun.management.ClassLoadingImpl java.lang:type=ClassLoading
sun.management.CompilationImpl java.lang:type=Compilation
sun.management.GarbageCollectorImpl java.lang:type=GarbageCollector,name=ConcurrentMarkSweep
sun.management.GarbageCollectorImpl java.lang:type=GarbageCollector,name=ParNew
sun.management.HotSpotDiagnostic com.sun.management:type=HotSpotDiagnostic
sun.management.ManagementFactoryHelper$1 java.nio:type=BufferPool,name=direct
sun.management.ManagementFactoryHelper$1 java.nio:type=BufferPool,name=mapped
sun.management.ManagementFactoryHelper$PlatformLoggingImpl java.util.logging:type=Logging
sun.management.MemoryImpl java.lang:type=Memory
sun.management.MemoryManagerImpl java.lang:type=MemoryManager,name=CodeCacheManager
sun.management.MemoryPoolImpl java.lang:type=MemoryPool,name=Par Survivor Space
sun.management.MemoryPoolImpl java.lang:type=MemoryPool,name=CMS Perm Gen
sun.management.MemoryPoolImpl java.lang:type=MemoryPool,name=Par Eden Space
sun.management.MemoryPoolImpl java.lang:type=MemoryPool,name=Code Cache
sun.management.MemoryPoolImpl java.lang:type=MemoryPool,name=CMS Old Gen
sun.management.RuntimeImpl java.lang:type=Runtime
sun.management.ThreadImpl java.lang:type=Threading
-------------------------------
type=kafka.SocketServerStats
getAvgFetchRequestMs: 0.0
getAvgProduceRequestMs: 0.0
getBytesReadPerSecond: 0.0
getBytesWrittenPerSecond: 0.0
getFetchRequestsPerSecond: -0.0
getMaxFetchRequestMs: 0.0
getMaxProduceRequestMs: 0.0
getNumFetchRequests: 0
getNumProduceRequests: 0
getProduceRequestsPerSecond: -0.0
-------------------------------
java.lang:type=Memory
HeapMemoryUsage javax.management.openmbean.CompositeData
getCommitted: 3194421248
getInit: 3221225472
getMax: 3194421248
getUsed: 163302248
NonHeapMemoryUsage javax.management.openmbean.CompositeData
getCommitted: 24313856
getInit: 24313856
getMax: 136314880
getUsed: 14854816
ObjectPendingFinalizationCount int
Verbose boolean
ObjectName javax.management.ObjectName
-------------------------------
getName: ParNew
getMemoryPoolNames: [Ljava.lang.String;@23652209
getObjectName: java.lang:type=GarbageCollector,name=ParNew
getClass: class com.sun.proxy.$Proxy1
getCollectionCount: 0
getCollectionTime: 0
getName: ConcurrentMarkSweep
getMemoryPoolNames: [Ljava.lang.String;@2c61bbb7
getObjectName: java.lang:type=GarbageCollector,name=ConcurrentMarkSweep
getClass: class com.sun.proxy.$Proxy1
getCollectionCount: 0
getCollectionTime: 0
kafka.log.LogStats kafka:type=kafka.logs.guoguo_t_1-1
CurrentOffset: 5519897
Name: guoguo_t_1-1
NumAppendedMessages: 0
NumberOfSegments: 1
Size: 5519897
kafka.log.LogStats kafka:type=kafka.logs.guoguo_t_1-0
CurrentOffset: 7600338
Name: guoguo_t_1-0
NumAppendedMessages: 0
NumberOfSegments: 1
Size: 7600338
kafka.network.SocketServerStats kafka:type=kafka.SocketServerStats
BytesReadPerSecond: 0.0
AvgFetchRequestMs: 0.0
AvgProduceRequestMs: 0.0
BytesWrittenPerSecond: 0.0
FetchRequestsPerSecond: -0.0
MaxFetchRequestMs: 0.0
MaxProduceRequestMs: 0.0
NumFetchRequests: 0
NumProduceRequests: 0
ProduceRequestsPerSecond: -0.0
TotalBytesRead: 0
kafka.utils.Log4jController kafka:type=kafka.Log4jController
使用JMX监控Kafka的更多相关文章
- 如何使用JMX监控Kafka
使用kafka做消息队列中间件时,为了实时监控其性能时,免不了要使用jmx调取kafka broker的内部数据,不管是自己重新做一个kafka集群的监控系统,还是使用一些开源的产品,比如yahoo的 ...
- 使用kafka-eagle监控Kafka
# 监控kafka集群,开启监控趋势图使用 # 有一个问题,需要在kafka-server-start.sh文件中配置端口,有如下三种办法 # 第一种:复制并修改kafka目录,比如kafka-1,k ...
- Prometheus+Grafana通过kafka_exporter监控kafka
Prometheus+Grafana通过kafka_exporter监控kafka 一.暴露 kafka-metric 方式 二.jmx_exporter方式 2.1 下载jmx_prometheus ...
- ActiveMQ笔记(5):JMX监控
系统上线运行后,及时监控报警是很必要的手段,对于ActiveMQ而言,主要监控的指标有:MQ本身的健康状况.每个队列的生产者数量.消费者数量.队列的当前消息数等. ActiveMQ支持JMX监控,使用 ...
- Tomcat调优及JMX监控
Tomcat调优及JMX监控 实验背景 ====================================================== 系统版本:CentOS release 6.5 ( ...
- Kafka 消息监控 - Kafka Eagle
1.概述 在开发工作当中,消费 Kafka 集群中的消息时,数据的变动是我们所关心的,当业务并不复杂的前提下,我们可以使用 Kafka 提供的命令工具,配合 Zookeeper 客户端工具,可以很方便 ...
- Jetty服务器jmx监控
Jetty服务器jmx监控 Jetty 服务器增加jmx,jmx-remote模块 1.修改对应jetty服务器的配置文件start.ini追加如下两行–module=jmx–module=jmx-r ...
- zabbix监控tomcat(使用jmx监控,但不使用系统自带模版)
一,zabbx使用jmx监控tomcat的原理分析 1.Zabbix-Server找Zabbix-Java-Gateway获取Java数据 2.Zabbix-Java-Gateway找Java程序(j ...
- zabbix使用jmx监控tomcat
zabbix监控Tomcat/JVM实例性能(115) – 运维生存时间http://www.ttlsa.com/zabbix/zabbix-use-jmx-monitor-tomcat/ zabbi ...
随机推荐
- how to remove untagged / none images
docker rmi $(docker images -a| grep "^<none>" | awk '{print $"3"}')
- wps标准格式
- 中小型研发团队架构实践:分布式协调服务ZooKeeper
一.ZooKeeper 是什么 Apache ZooKeeper 由 Apache Hadoop 的子项目发展而来,于 2010 年 11 月正式成为了 Apache 的顶级项目. 相关厂商内容 优秀 ...
- MAC 通过brew安装软件
1.安装brew ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/instal ...
- DEDECMS 添加栏目图片
当我们一个栏目列表都用缩略图来表示产,而不仅仅只是文字,如果没有这项功能会非常麻烦,网上有很多这方面的资料,但是都试过了有很多问题,自己研究一下,测试基本通过.需要新加字段 typeimg 后台执行S ...
- rabbitmq文章源
网易杭研后台技术中心的博客 rabbitmq topic简单demo http://blog.csdn.net/cugb1004101218/article/details/21243927?utm_ ...
- 点滴积累【other】---.net程序员面试题总结
自己总结的.net的面试题. 说明:以下代码均已经过验证正确无误! C#: 1.c#实现N的阶乘: class Program { static void Main(string[] args) { ...
- Atitit.导出excel功能的设计 与解决方案
Atitit.导出excel功能的设计 与解决方案 1.1. 项目起源于背景1 1.2. Js jquery方案(推荐)jquery.table2excel1 1.3. 服务器方案2 1.4. 详细 ...
- C语言第十一回合:预处理命令的集中营
C语言第十一回合:预处理命令的集中营 [学习目标] 1. 宏定义 2. 文件包括"处理 3. 条件编译 预处理命令:能够改进程序设计的 ...
- Java Web框架play framework的下载与环境变量配置
Web项目的开发有着众多的框架,近期刚刚接触了play. 对于一个Java开发者来说,play是一个不可多得的好框架.以下我简介下怎样下载play .以及play的环境变量配置方法. (1)登录pla ...