BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2705
【题目大意】
求出∑gcd(i,N)(1<=i<=N)
【题解】
$∑_{i=1}^{N}gcd(i,N)$
$=∑_{i=1}^{N}∑_{d|gcd(i,N)}\phi(d)$
$=∑ \phi(d)∑ _{1=<i<=N \land d|i \land d|N}1$
$=∑_{d|N}\phi(d)\lfloor\frac{i}{d}\rfloor$
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
int Euler(int n){
int t=1,i;
if(!(n&1))for(n>>=1;!(n&1);n>>=1,t<<=1);
for(i=3;i*i<=n;i+=2)if(n%i==0)for(n/=i,t*=i-1;n%i==0;n/=i,t*=i);
if(n>1)t*=n-1;
return t;
}
int main(){
int n;
long long ans=0;
while(~scanf("%d",&n)){
for(int i=1;i*i<=n;i++){
if(n%i==0){
ans+=1LL*i*Euler(n/i);
if(i*i<n)ans+=1LL*(n/i)*Euler(i);
}
}printf("%lld\n",ans);
}return 0;
}
BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)的更多相关文章
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- bzoj 2705 [SDOI2012]Longge的问题——欧拉函数大水题
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- [SDOI2012] Longge的问题 - 欧拉函数
求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求 ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
随机推荐
- 从C语言项目谈编程
很多初学C语言的小伙伴,在学习之初并没有一个大概的概念,学习这门语言需要掌握多少知识点,怎么才算学的差不多? C语言的精髓点在哪? 学到多少东西才能够达到做项目的标准?学习的时候需要注意哪些细节点?疑 ...
- 什么是AMD规范
AMD规范全称是Asynchronous Module Definition,即异步模块加载机制.从它的规范描述页面看,AMD很短也很简单,但它却完整描述了模块的定义,依赖关系,引用关系以及加载机制. ...
- 【HNOI】矩阵染色 数论
[题目描述]一个2*i的矩阵,一共有m种颜色,相邻两个格子颜色不能相同,m种颜色不必都用上,f[i]表示这个答案,求Σf[i]*(2*i)^m (1<=i<=n)%p. [数据范围] 20 ...
- eCharts_基于eCharts开发的一个多图表页面
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- hdu 2962 Trucking (二分+最短路Spfa)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...
- 网络协议之HTTP协议
HTTP协议详解(真的很经典) 转自:http://blog.csdn.net/gueter/archive/2007/03/08/1524447.aspx Author :Jeffrey 引言 HT ...
- 运维开发:python websocket网页实时显示远程服务器日志信息
功能:用websocket技术,在运维工具的浏览器上实时显示远程服务器上的日志信息 一般我们在运维工具部署环境的时候,需要实时展现部署过程中的信息,或者在浏览器中实时显示程序日志给开发人员看.你还在用 ...
- MS SQLServer 批量附加数据库
/************************************************************ * 标题:MS SQLServer 批量附加数据库 * 说明:请根据下面的注 ...
- Phoenix批量修改数据
很简单的一个东西,查了挺久的,浪费了很多的时间 直接用Upsert Into Select就可以了 例:把tables表中cloumn2列等于bbb的都改成aaa Upsert Into Table ...
- 在一个Ubuntu系统上配置Apache支持多个站点
查看原文请访问:http://codewenda.com/ubuntu16-04%E9%85%8D%E7%BD%AEapache%E6%94%AF%E6%8C%81%E5%A4%9A%E4%B8%AA ...