Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) D. Jury Meeting(双指针模拟)
1 second
512 megabytes
standard input
standard output
Country of Metropolia is holding Olympiad of Metrpolises soon. It mean that all jury members of the olympiad should meet together in Metropolis (the capital of the country) for the problem preparation process.
There are n + 1 cities consecutively numbered from 0 to n. City 0 is Metropolis that is the meeting point for all jury members. For each city from 1 to n there is exactly one jury member living there. Olympiad preparation is a long and demanding process that requires k days of work. For all of these k days each of the n jury members should be present in Metropolis to be able to work on problems.
You know the flight schedule in the country (jury members consider themselves important enough to only use flights for transportation). All flights in Metropolia are either going to Metropolis or out of Metropolis. There are no night flights in Metropolia, or in the other words, plane always takes off at the same day it arrives. On his arrival day and departure day jury member is not able to discuss the olympiad. All flights in Megapolia depart and arrive at the same day.
Gather everybody for k days in the capital is a hard objective, doing that while spending the minimum possible money is even harder. Nevertheless, your task is to arrange the cheapest way to bring all of the jury members to Metrpolis, so that they can work together for kdays and then send them back to their home cities. Cost of the arrangement is defined as a total cost of tickets for all used flights. It is allowed for jury member to stay in Metropolis for more than k days.
The first line of input contains three integers n, m and k (1 ≤ n ≤ 105, 0 ≤ m ≤ 105, 1 ≤ k ≤ 106).
The i-th of the following m lines contains the description of the i-th flight defined by four integers di, fi, ti and ci (1 ≤ di ≤ 106, 0 ≤ fi ≤ n, 0 ≤ ti ≤ n, 1 ≤ ci ≤ 106, exactly one of fi and ti equals zero), the day of departure (and arrival), the departure city, the arrival city and the ticket cost.
Output the only integer that is the minimum cost of gathering all jury members in city 0 for k days and then sending them back to their home cities.
If it is impossible to gather everybody in Metropolis for k days and then send them back to their home cities, output "-1" (without the quotes).
2 6 5
1 1 0 5000
3 2 0 5500
2 2 0 6000
15 0 2 9000
9 0 1 7000
8 0 2 6500
24500
2 4 5
1 2 0 5000
2 1 0 4500
2 1 0 3000
8 0 1 6000
-1
The optimal way to gather everybody in Metropolis in the first sample test is to use flights that take place on days 1, 2, 8 and 9. The only alternative option is to send jury member from second city back home on day 15, that would cost 2500 more.
In the second sample it is impossible to send jury member from city 2 back home from Metropolis.
【题意】有n+1个城市,每个城市都有一个人,他们要去0城市参加活动,一起待k天,然后再回来,你可以提前去也可以延后回去,问 你能不能使所有人一起待k天,可以的话,最小花费是多少?
【题解】将航班分为两部分(去和回来),然后找到两个极限位置L,R,去的航班在L之前都没法使得左右人到达,回来的人在R之后 不会全部都回来,然后双指针,维护区间长度>=k,但是要预处理,对于前L,mn[0][i]表示前L个航班从i城市出发到达0城市的最小花费,
然后对于回来的航班,mn[1][i]表示所有从L航班及之前出发的都能回来的航班中回到i城市的最小花费,然后全部加进ans,然后在双指针的过程中不断地更新mn[0][i],mn[1][i],取ans最小值即可。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define rep(i,l,r) for(int i=(l);i<=(r);++i)
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 1e5+;;
const int M = ;
const int mod = ;
const int mo=;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
ll qpow(int x,int qq){ll f=,p=x;while(qq){if(qq&)f=f*p%mod;p=1LL*p*p%mod;qq>>=;}}
int n,m,k;
int mn[][N];
bool vis[N];
multiset<int>s[N];
struct man{
int d,f,t,c;
}arrive[N],depart[N];
bool cmp(const man &a,const man &b){return a.d<b.d;};
int main(){
for(int i=;i<N;i++)mn[][i]=mn[][i]=;
int cnt1=,cnt2=,cnt=,L=-,R=-;
scanf("%d%d%d",&n,&m,&k);
while(m--){
int d,f,t,c;
scanf("%d%d%d%d",&d,&f,&t,&c);
if(!f)depart[++cnt2]=man{d,f,t,c};
if(!t)arrive[++cnt1]=man{d,f,t,c};
}
sort(arrive+,arrive++cnt1,cmp);
sort(depart+,depart++cnt2,cmp);
for(int i=;i<=cnt1;i++){
mn[][arrive[i].f]=min(mn[][arrive[i].f],arrive[i].c);
if(!vis[arrive[i].f]){
vis[arrive[i].f]=true;
cnt++;
}
if(cnt==n){
L=i;
break;
} }
int l=L,r;
met(vis,false);cnt=;
for(int i=cnt2;i>=;i--){
if(depart[i].d<arrive[L].d+k+)break;
mn[][depart[i].t]=min(mn[][depart[i].t],depart[i].c);
s[depart[i].t].insert(depart[i].c);
r=i;
if(!vis[depart[i].t]){
vis[depart[i].t]=true;
cnt++;
}
if(cnt==n&&R==-){
R=i;
}
}
ll ans=,res;
for(int i=;i<=n;i++){
ans+=mn[][i]+mn[][i];
}
res=ans;
while(){
if(arrive[l].d+k+>depart[R].d||r>R||l>=cnt1)break;
while(arrive[l].d+k+<=depart[r].d&&l<cnt1){
l++;
if(arrive[l].c<mn[][arrive[l].f]){
ans-=(mn[][arrive[l].f]-arrive[l].c);
mn[][arrive[l].f]=arrive[l].c;
}
if(arrive[l].d+k+<=depart[r].d)res=min(res,ans);
} while(depart[r].d<arrive[l].d++k&&r<R){
r++;
s[depart[r-].t].erase(s[depart[r-].t].find(depart[r-].c));
ans-=(mn[][depart[r-].t]-*s[depart[r-].t].begin());
mn[][depart[r-].t]=*s[depart[r-].t].begin();
if(arrive[l].d+k+<=depart[r].d)res=min(res,ans);
}
}
if(L==-||R==-)puts("-1");
else if(depart[R].d-arrive[L].d>=k+)printf("%lld\n",res);
else puts("-1");
return ;
}
Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) D. Jury Meeting(双指针模拟)的更多相关文章
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises)
A. Fraction 题目链接:http://codeforces.com/contest/854/problem/A 题目意思:给出一个数n,求两个数a+b=n,且a/b不可约分,如果存在多组满足 ...
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) D
Country of Metropolia is holding Olympiad of Metrpolises soon. It mean that all jury members of the ...
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) C
Helen works in Metropolis airport. She is responsible for creating a departure schedule. There are n ...
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) B
Maxim wants to buy an apartment in a new house at Line Avenue of Metropolis. The house has n apartme ...
- Codeforces Round #433 (Div. 2, based on Olympiad of Metropolises) A
Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned tha ...
- Codeforces Round #507 (Div. 2, based on Olympiad of Metropolises) D mt19937
https://codeforces.com/contest/1040/problem/D 用法 mt19937 g(种子); //种子:time(0) mt19937_64 g(); //long ...
- 【Codeforces Round #507 (Div. 2, based on Olympiad of Metropolises) B】Shashlik Cooking
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 翻转一次最多影响2k+1个地方. 如果n<=k+1 那么放在1的位置就ok.因为能覆盖1..k+1 如果n<=2k+1 ...
- 【Codeforces Round #507 (Div. 2, based on Olympiad of Metropolises) A】Palindrome Dance
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] i从1..n/2循环一波. 保证a[i]和a[n-i+1]就好. 如果都是2的话填上min(a,b)*2就好 其他情况跟随非2的. ...
- Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) B. The Meeting Place Cannot Be Changed
地址:http://codeforces.com/contest/782/problem/B 题目: B. The Meeting Place Cannot Be Changed time limit ...
随机推荐
- LightOJ 1326 – Race 第二类Stirling数/
简单的模板题. 题意:问n匹马出现的不同排名数. 题解:可以使用DP,本质上还是第二类Stirling数(隔板法) #include <stdio.h> #include <iost ...
- [BZOJ2946][Poi2000]公共串解题报告|后缀自动机
鉴于SAM要简洁一些...于是又写了一遍这题... 不过很好呢又学到了一些新的东西... 这里是用SA做这道题的方法 首先还是和两个字符串的一样,为第一个字符串建SAM 然后每一个字符串再在这个SAM ...
- 【51NOD-0】1011 最大公约数GCD
[算法]欧几里德算法 #include<cstdio> int gcd(int a,int b) {?a:gcd(b,a%b);} int main() { int a,b; scanf( ...
- 【HNOI】 c tree-dp
[题目描述]给定一个n个节点的树,每个节点有两个属性值a[i],b[i],我们可以在树中选取一个连通块G,这个连通块的值为(Σa[x])(Σb[x]) x∈G,求所有连通块的值的和,输出答案对1000 ...
- 往Layout中动态添加View
需要注意几个方法:基本上所有的方法参数单位是px 1.设置View的宽高: LinearLayout.LayoutParams params = new LinearLayout().LayoutPa ...
- Android Studio注意事项
http://www.android-studio.org/ 解决方法: 在 Android Studio 安装目录 bin/idea.properties 文件最后追加一句 1 disable.an ...
- js中的indexOf
1.概述 indexOf大小写敏感,其中的O要大写 2.对于字符串而言 indexOf返回字符串第一次出现的位置,若没有出现返回-1 var str = "hello world" ...
- 调试应用程序(Debugging Applications)
调试应用程序(Debugging Applications)¶ Phalcon中提供了提供了几种调试级别即通知,错误和异常. 异常类 Exception class 提供了错误发生时的一些常用的调试信 ...
- device tree source file position
android/kernel/msm-4.9/arch/arm64/boot/dts/qcom/
- Linux下用freetds执行SQL Server的sql语句和存储过程
Linux下用freetds执行SQL Server的sql语句和存储过程 http://www.linuxidc.com/Linux/2012-06/61617.htm freetds相关 http ...