题意:给你一张图,给你每个点的权值,要么是-1,要么是1,要么是0。如果是-1就不用管,否则就要删除图中的某些边,使得该点的度数 mod 2等于该点的权值。让你输出一个留边的方案。

首先如果图内有-1,那么必有解。否则如果初始不合法的点数为偶数,那么必有解,否则无解。因为删一条边,要么使图中不合法的点数+2,要么不变,要么-2。

如果有解,构造图的任意一个生成树,如果有-1,就让-1为根,否则任意结点为根。然后从叶子向根定每个点的入度数,由于自底向上,一个结点的儿子边都被处理完后,只需要决定父边是否删除即可。可以想见,根节点不用判,必然合法(前提我们已经判断其有解;如果无解,当然根节点就无法合法咯)。

实际操作时,不用构造生成树,因为DFS,用DFS树即可。

#include<cstdio>
#include<algorithm>
using namespace std;
bool vis[300005];
int v[600005],next[600005],first[300005],e,id[600005];
void AddEdge(int U,int V,int ID){
v[++e]=V;
id[e]=ID;
next[e]=first[U];
first[U]=e;
}
int n,m,d[300005],du[300005],anss[300005],ans;
bool cho[300005];
void dfs(int U,int fa,int fa_edge){
vis[U]=1;
int cnt=0;
for(int i=first[U];i;i=next[i]){
if(!vis[v[i]]){
dfs(v[i],U,id[i]);
if(cho[id[i]]){
++cnt;
}
}
}
if(d[U]!=-1 && cnt%2!=d[U]){
cho[fa_edge]=1;
anss[++ans]=fa_edge;
}
}
int main(){
int x,y;
//freopen("b.in","r",stdin);
int fu1_node=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
scanf("%d",&d[i]);
if(d[i]==-1){
fu1_node=i;
}
}
for(int i=1;i<=m;++i){
scanf("%d%d",&x,&y);
AddEdge(x,y,i);
AddEdge(y,x,i);
++du[x];
++du[y];
}
int cnt=0;
for(int i=1;i<=n;++i){
if(d[i]!=-1 && du[i]%2!=d[i]){
++cnt;
}
}
if(fu1_node){
dfs(fu1_node,0,0);
}
else if(cnt%2==0){
dfs(1,0,0);
}
else{
puts("-1");
return 0;
}
sort(anss+1,anss+ans+1);
printf("%d\n",ans);
for(int i=1;i<ans;++i){
printf("%d ",anss[i]);
}
if(ans){
printf("%d\n",anss[ans]);
}
return 0;
}

【推导】【DFS】Codeforces Round #429 (Div. 1) B. Leha and another game about graph的更多相关文章

  1. Codeforces Round #429 (Div. 2) - D Leha and another game about graph

    Leha and another game about graph 题目大意:给你一个图,每个节点都有一个v( -1 , 0 ,1)值,要求你选一些边,使v值为1 的点度数为奇数,v值为0的度数为偶数 ...

  2. CodeForces 840C - On the Bench | Codeforces Round #429 (Div. 1)

    思路来自FXXL中的某个链接 /* CodeForces 840C - On the Bench [ DP ] | Codeforces Round #429 (Div. 1) 题意: 给出一个数组, ...

  3. CodeForces 840B - Leha and another game about graph | Codeforces Round #429(Div 1)

    思路来自这里,重点大概是想到建树和无解情况,然后就变成树形DP了- - /* CodeForces 840B - Leha and another game about graph [ 增量构造,树上 ...

  4. CodeForces 840A - Leha and Function | Codeforces Round #429 (Div. 1)

    /* CodeForces 840A - Leha and Function [ 贪心 ] | Codeforces Round #429 (Div. 1) A越大,B越小,越好 */ #includ ...

  5. DFS Codeforces Round #306 (Div. 2) B. Preparing Olympiad

    题目传送门 /* DFS: 排序后一个一个出发往后找,找到>r为止,比赛写了return : */ #include <cstdio> #include <iostream&g ...

  6. DFS Codeforces Round #299 (Div. 2) B. Tavas and SaDDas

    题目传送门 /* DFS:按照长度来DFS,最后排序 */ #include <cstdio> #include <algorithm> #include <cstrin ...

  7. Codeforces Round #429 (Div. 2/Div. 1) [ A/_. Generous Kefa ] [ B/_. Godsend ] [ C/A. Leha and Function ] [ D/B. Leha and another game about graph ] [ E/C. On the Bench ] [ _/D. Destiny ]

    PROBLEM A/_ - Generous Kefa 题 OvO http://codeforces.com/contest/841/problem/A cf 841a 解 只要不存在某个字母,它的 ...

  8. Codeforces Round #429 (Div. 2) 补题

    A. Generous Kefa 题意:n个气球分给k个人,问每个人能否拿到的气球都不一样 解法:显然当某种气球的个数大于K的话,就GG了. #include <bits/stdc++.h> ...

  9. dfs Codeforces Round #356 (Div. 2) D

    http://codeforces.com/contest/680/problem/D 题目大意:给你一个大小为X的空间(X<=m),在该空间内,我们要尽量的放一个体积为a*a*a的立方体,且每 ...

随机推荐

  1. 【HNOI】 c tree-dp

    [题目描述]给定一个n个节点的树,每个节点有两个属性值a[i],b[i],我们可以在树中选取一个连通块G,这个连通块的值为(Σa[x])(Σb[x]) x∈G,求所有连通块的值的和,输出答案对1000 ...

  2. css优先级机制

    所谓CSS优先级,即是指CSS样式在浏览器中被解析的先后顺序.   1.important >(内联样式)Inline style  >(内部样式)Internal style sheet ...

  3. Tomcat的安装以及基本配置

    Tomcat是目前最常见也是最流行的基于java的一个web服务器软件   Tomcat的安装   (1)首先需要java环境,也就是说要依赖于java虚拟机JVM   (2)下载Tomcat ,地址 ...

  4. kaggle比赛流程(转)

    一.比赛概述 不同比赛有不同的任务,分类.回归.推荐.排序等.比赛开始后训练集和测试集就会开放下载. 比赛通常持续 2 ~ 3 个月,每个队伍每天可以提交的次数有限,通常为 5 次. 比赛结束前一周是 ...

  5. mysql中的enum型

    enum设置后 值只能是给出的值中的其中一个 mysql> create table enum(e enum('1','2','3','4','5','6','7','8','9','10')) ...

  6. 数组返回NULL绕过

    BUGKU:http://120.24.86.145:9009/19.php 还没看完源码,我就直接加了一个password[]=1结果就拿到flag了.然后再看源码我自己都搞不懂为什么可以得到源码. ...

  7. python基础===进程,线程,协程的区别(转)

    本文转自:http://blog.csdn.net/hairetz/article/details/16119911 进程拥有自己独立的堆和栈,既不共享堆,亦不共享栈,进程由操作系统调度. 线程拥有自 ...

  8. 5-3 Linux内核计时、延时函数与内核定时器【转】

    转自:http://www.xuebuyuan.com/510594.html 5-3 Linux内核计时.延时函数与内核定时器 计时 1. 内核时钟 1.1   内核通过定时器(timer)中断来跟 ...

  9. C C++ 常被人问的问题分析

    正文  -  开始了, 直接扯淡 以下都是自己面试中遇到的常见的问题.如有不妥的地方就当见笑了. 哈哈 1. 谈谈你们服务器的架构吧. 分析: 假如这是第一个问题, 你可以走了. 可能各方面原因他不想 ...

  10. P2327

    code[class*="language-"] { padding: .1em; border-radius: .3em; white-space: normal; backgr ...