不要问窝 为什么过了> <

窝也不造为什么就过了

说是%3变成稀疏矩阵

可是随便YY个案例都会超时。。

看来数据是随机的诶

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <malloc.h>
#include <ctype.h>
#include <math.h>
#include <string>
#include<iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
#define MAXN 100*111
#include <queue>
#include <vector>
#define IN freopen("in.txt","r",stdin);
#define OUT freopen("out.txt","w",stdout);
int Scan()
{
int x;
char c;
while((c=getchar())<'0' || c>'9') ;
x=c-'0' ;
while((c=getchar())>='0' && c<='9')
x+=c-'0';
x%=3 ;
return x;
}
int a[888][880],b[880][880],c[880][880];
int main()
{
int n;
IN;
while(scanf("%d",&n)!=EOF)
{
memset(c,0,sizeof(c));
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
a[i][j]=Scan();
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
b[i][j]=Scan();
}
}
for(int i=0; i<n; i++)
for(int k=0; k<n; k++)
{
if(a[i][k]==1)
for (int j=0; j<n ; j++)
c[i][j]+=b[k][j];
else if(a[i][k]==2)
for(int j=0; j<n; j++ )
c[i][j]+=(b[k][j]<<1);
}
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
{
printf("%d%c",c[i][j]%3,j==n-1?'\n':' ');
}
}
return 0;
}

HDU4920 Matrix multiplication 矩阵的更多相关文章

  1. hdu4920 Matrix multiplication 模3矩阵乘法

    hdu4920 Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  2. HDU-4920 Matrix multiplication

    矩阵相乘,采用一行的去访问,比采用一列访问时间更短,根据数组是一行去储存的.神奇小代码. Matrix multiplication Time Limit: 4000/2000 MS (Java/Ot ...

  3. HDU 4920 Matrix multiplication(矩阵相乘)

    各种TEL,233啊.没想到是处理掉0的情况就能够过啊.一直以为会有极端数据.没想到居然是这种啊..在网上看到了一个AC的奇妙的代码,经典的矩阵乘法,仅仅只是把最内层的枚举,移到外面就过了啊...有点 ...

  4. Poj 3318 Matrix Multiplication( 矩阵压缩)

    Matrix Multiplication Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18928   Accepted: ...

  5. HDU 4920 Matrix multiplication 矩阵相乘。稀疏矩阵

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  6. POJ 3318 Matrix Multiplication(矩阵乘法)

    题目链接 题意 : 给你三个n维矩阵,让你判断A*B是否等于C. 思路 :优化将二维转化成一维的.随机生成一个一维向量d,使得A*(B*d)=C*d,多次生成多次测试即可使错误概率大大减小. #inc ...

  7. 【bitset】hdu4920 Matrix multiplication

    先把两个矩阵全都mod3. S[i][j][k]表示第i(0/1)个矩阵的行/列的第k位是不是j(1/2). 然后如果某两个矩乘对应位上为1.1,乘出来是1: 1.2:2: 2.1:2: 2.2:1. ...

  8. 矩阵乘法 --- hdu 4920 : Matrix multiplication

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  9. UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)

    意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error 输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中 ...

随机推荐

  1. 如何直接运行python文件

    1. 在Windows上是不能直接运行python文件的,但是,在Mac和Linux上是可以的,方法是在.py文件的第一行加上一个特殊的注释: #!/usr/bin/env python3 print ...

  2. Java介绍

    Java简介 Java是由Sun Microsystems公司于1995年5月推出的Java面向对象程序设计语言和Java平台的总称.由James Gosling和同事们共同研发,并在1995年正式推 ...

  3. python 打包详解

    基本步骤: 1. 写setup.py 2. 运行“python setup.py sdist” 3. 在当前目录下会生成文件夹“dist”,打包好的代码就在dist中,以“.tar.gz”的形式被压缩 ...

  4. 设计模式-外观模式(Facade Pattern)

    本文由@呆代待殆原创,转载请注明出处:http://www.cnblogs.com/coffeeSS/ 外观模式简介 外观模式的作用用一句话说就是简化接口,举个例子楼主每次编程的时候都要点开IDE.点 ...

  5. 【UOJ #179】线性规划 单纯形模板

    http://uoj.ac/problem/179 终于写出来了单纯性算法的板子,抄的网上大爷的qwq 辅助线性规划找非基变量时要加个随机化才能A,我也不知道为什么,卡精度吗? 2017-3-6UPD ...

  6. 【推导】【贪心】Codeforces Round #431 (Div. 1) A. From Y to Y

    题意:让你构造一个只包含小写字母的可重集,每次可以取两个元素,将它们合并,合并的代价是这两个元素各自的从‘a’到‘z’出现的次数之积的和. 给你K,你构造的可重集必须满足将所有元素合而为一以后,所消耗 ...

  7. 【概率dp】【数学期望】Gym - 101190F - Foreign Postcards

    http://blog.csdn.net/DorMOUSENone/article/details/73699630

  8. 【最小生成树】【kruscal】【贪心】CDOJ1636 梦后楼台高锁,酒醒帘幕低垂

    首先,考虑到,我们需要找到一条路径,使它的最小边尽量大,最大边尽量小 然后,考虑到m比较小,我们可以去寻找一个m^2或者m^2logm的算法 考虑枚举最小边,那么我们就需要在m或者mlogm的时间内找 ...

  9. Java学习笔记(9)

    final关键字;  (修饰符) final关键字的用法: final关键字修饰一个基本类型的变量时,该变量不能重新赋值,第一次的值为最终的. final关键字修饰一个引用类型变量时,该变量不能重新指 ...

  10. C++ cout输出保留小数

    参考: http://www.cnblogs.com/wushuaiyi/p/4439361.html http://blog.csdn.net/edricbjtu/article/details/4 ...