D树

时间限制:10000/5000 MS(Java / Others)内存限制:102400/102400
K(Java / Others)

总共提交5400个已接受的提交1144

问题描述
南京理工大学的操场上站着一棵高大的树。在树的每个分支上是一个整数(树可以被看作是一个有N个顶点的连通图,而每个分支可以被当作一个顶点)。今天,树下的学生正在考虑一个问题:我们可以在树上找到这样一个链,使链上所有整数(mod
10 6 + 3)的乘积等于K?

你能帮助他们解决这个问题吗?
 
输入
有几个测试用例,请处理,直到EOF。

每个测试用例都以包含两个整数N(1 <= N <= 10 5)和K(0 <= <<10 6 +
3)的行开始。下面一行包含n个数字v i(1 <= v i <10 6 +
3),其中vi表示顶点i上的整数。然后遵循N - 1行。每行包含两个整数x和y,表示顶点x和顶点y之间的无向边。
 
产量
对于每个测试用例,打印一个单行,其中包含两个整数a和b(其中a <b),表示链的两个端点。如果存在多个解决方案,请打印词典上最小的一个。如果没有解决方案,请打印“无解”(不含引号)。

欲了解更多信息,请参阅下面的示例输出。
 
示例输入
5 60
2 5 2 3 3
1 2
1 3
2 4
2 5
5 2
2 5 2 3 3
1 2
1 3
2 4
2 5
 
示例输出
3 4
没有解决方案
暗示
1.“请按字典顺序打印最小的一个”。是指:先按照第一个数字的大小进行比较,若第一个数字大小相同,则按照第二个数字大小进行比较,依次类别。 2.若出现栈溢出,推荐使用C ++语言提交,并通过以下方式扩栈:
#pragma comment(linker,“/ STACK:102400000,102400000”)

点分治

这种树上找路径问题最容易想到的就是点分治

点治的思想其实很简单,分别以每个点为根,找出所有经过根的路径更新答案

由于路径是一个二维的量,直接枚举是O(n^2),而点分治通过固定一个根而使问题简化为一维O(n)

而由于树的性质,只要我们每次求出重心就可以保证最多只有logn层

总的复杂度就成了O(每一层操作复杂度 * logn)一般都是O(nlogn)或O(nlog^2n)

然而我点分治还是很生疏【我还是太弱了】

对于这道题,我们需要找到两条路径权值乘积取模为K

对于x * y ≡ K (mod P),可以化为x ≡ K/y (mod P)

所以我们只需开一个hash表存x的值,对于每个y,用K乘上y的逆元查表更新答案就好了

要注意的细节就是根节点也要算上,而且查找与更新的路径只能有一个经过根,也就是算y时不算上,而算x存表时算上根

继续练习吧

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 100005,maxm = 200005,INF = 1000000000;
const LL P = 1000003;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int N,K,V[maxn],Siz[maxn],F[maxn],vis[maxn],rt,sum,ansx,ansy;
LL Hash[P],tmp[maxn],d[maxn],id[maxn],inv[P],cnt = 0;
int head[maxn],nedge = 0;
struct EDGE{int to,next;}edge[maxm];
inline void build(int u,int v){
edge[nedge] = (EDGE){v,head[u]}; head[u] = nedge++;
edge[nedge] = (EDGE){u,head[v]}; head[v] = nedge++;
}
void getRT(int u,int fa){
int to; Siz[u] = 1; F[u] = 0;
Redge(u) if (!vis[to = edge[k].to] && to != fa){
getRT(to,u);
Siz[u] += Siz[to];
F[u] = max(F[u],Siz[to]);
}
F[u] = max(F[u],sum - Siz[u]);
if (F[u] < F[rt]) rt = u;
}
inline void query(int x,int u){
x = 1ll * inv[x] * K % P;
int v = Hash[x];
if (!v) return;
if (v < u) swap(u,v);
if (u < ansx || (u == ansx && v < ansy))
ansx = u,ansy = v;
}
void dfs(int u,int fa){
tmp[++cnt] = d[u]; id[cnt] = u; int to;
Redge(u) if (!vis[to = edge[k].to] && to != fa){
d[to] = 1ll * V[to] * d[u] % P;
dfs(to,u);
}
}
void solve(int u){
int to; vis[u] = true; Hash[V[u]] = u;
Redge(u) if (!vis[to = edge[k].to]){
cnt = 0; d[to] = V[to];
dfs(to,u);
REP(i,cnt) query(tmp[i],id[i]);
cnt = 0; d[to] = 1ll * V[to] * V[u] % P;
dfs(to,u);
REP(i,cnt) if (!Hash[tmp[i]] || Hash[tmp[i]] > id[i]) Hash[tmp[i]] = id[i];
}
Hash[V[u]] = 0;
Redge(u) if (!vis[to = edge[k].to]){
cnt = 0; d[to] = 1ll * V[to] * V[u] % P;
dfs(to,u);
REP(i,cnt) Hash[tmp[i]] = 0;
}
Redge(u) if (!vis[to = edge[k].to]){
sum = Siz[to]; F[rt = 0] = INF;
getRT(to,rt);
solve(rt);
}
}
void init(){
memset(vis,0,sizeof(vis));
memset(head,-1,sizeof(head)); nedge = 0; ansx = ansy = INF;
REP(i,N) V[i] = RD() % P;
REP(i,N - 1) build(RD(),RD());
}
void INIT(){
inv[1] = 1;
for (int i = 2; i < P; i++){
inv[i] = ((P - P / i) * inv[P % i] % P + P) % P;
}
}
int main(){
INIT();
while (~scanf("%d%d",&N,&K)){
init();
F[rt = 0] = INF; sum = N;
getRT(1,rt);
solve(rt);
if (ansx == INF) printf("No solution\n");
else printf("%d %d\n",ansx,ansy);
}
return 0;
}

HDU4812 D tree 【点分治 + 乘法逆元】的更多相关文章

  1. [hdu4812]D Tree(点分治)

    题意:问有多少条路径,符合路径上所有节点的权值乘积模1000003等于k. 解题关键:预处理阶乘逆元,然后通过hash和树形dp$O(1)$的判定乘积存在问题,注意此道题是如何处理路径保证不重复的,具 ...

  2. 【点分治】【乘法逆元】hdu4812 D Tree

    思路比较裸,但是要把答案存到哈希表里面,这里需要一定技巧,否则会被K=1且点权全是1的数据卡飞.预处理乘法逆元.TLE了一天.换了种点分治的姿势…… #pragma comment(linker,&q ...

  3. HDU4812 D Tree(树的点分治)

    题目大概说给一棵有点权的树,输出字典序最小的点对,使这两点间路径上点权的乘积模1000003的结果为k. 树的点分治搞了.因为是点权过根的两条路径的LCA会被重复统计,而注意到1000003是质数,所 ...

  4. HDU 4812 D Tree 树分治

    题意: 给出一棵树,每个节点上有个权值.要找到一对字典序最小的点对\((u, v)(u < v)\),使得路径\(u \to v\)上所有节点权值的乘积模\(10^6 + 3\)的值为\(k\) ...

  5. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  6. 51nod1256(乘法逆元)

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...

  7. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  8. HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)

    原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...

  9. Codeforces 543D Road Improvement(树形DP + 乘法逆元)

    题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和H ...

随机推荐

  1. react-native android 初始化问题

    最近开始接触rn,官方起手,装了一堆工具,然后启动项目的时候出现了一堆问题,这里针对我遇到的一些问题提供一些解决方案. 本人开发环境mac,在启动ios的时候没啥大问题,可以直接启动,这里提示一点,因 ...

  2. Python3.5+selenium(11)脚本模块化&参数化

    mail126.py脚本如下 from selenium import webdriver from time import sleep from model1 import Login driver ...

  3. 6.2 element和elements

    为什么这个要单独拿出来说,因为我在很多群里面看见很多人不能区分这个! 因为之前的包有点问题,另外后续还会更换app,因为部分app可能没有符合的案例场景,我需要找到那个场景给大家做个实例..便于大家跟 ...

  4. 【SpringCloud】第五篇: 路由网关(zuul)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  5. 如何理解一台服务器可以绑定多个ip,一个ip可以绑定多个域名

    一个域名只能对应一个IP的意思是域名在DNS服务器里做解析的时候 一条记录只能指向一个IP地址.这个是死规定,试想一下,如果一个子域名指向了2个ip ,当访问者打开这个域名的时候,浏览器是展示哪个IP ...

  6. CF245H Queries for Number of Palindromes

    题目描述 给你一个字符串s由小写字母组成,有q组询问,每组询问给你两个数,l和r,问在字符串区间l到r的字串中,包含多少回文串. 时空限制 5000ms,256MB 输入格式 第1行,给出s,s的长度 ...

  7. 【WXS数据类型】Date

    生成 date 对象需要使用 getDate函数, 返回一个当前时间的对象. var date = getDate(); //返回当前时间对象 属性: 名称 值类型 说明 [Date].constru ...

  8. 关于java使用double还是float

    眼睛一亮在论坛上发现一枚很有价值的评论赶紧抄下来... 记住java一定要用double,更鼓不变,就算数值不大也要用double.了解java虚拟机的底层会知道,float放在内存中其实是当作dou ...

  9. java字符转义

    之前对java字符转义这一块稍作了解,在这里理理自己主观浅显的理解 这里会谈谈字符编码的是另一种问题和转义没有关系 以下面代码做分析 System.out.println("a". ...

  10. 同台服务器 部署多个tomcat 需要做的修改

    需要修改以下加粗部分: 1:访问端口 8080->8081 2:shutdown 端口 8005->8015 3: AJP端口 8001->8010 <?xml version ...