Network of Schools

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 24880   Accepted: 9900

题目链接http://poj.org/problem?id=1236

Description:

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school.

Input:

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output:

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input:

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output:

1
2

题意:

给出一个有向图,然后要你输出两个任务的答案:

1.至少需要从多少个点出发,能够到达所有的点;2.最少需要连多少条边,能够使得从任意点出发都能够到达其它所有点。

题解:

这个题我一开始想的就是直接暴力,但很明显第二个问题行不通,所以就要考虑一些性质,或者用一些数学思想。

第一个问题还是比较好想,入度为0的点的个数即位答案,如果不存在入度为0的点,答案就是1。简略证明如下(题目保证图是连通的):

假设入度为0的点为n,那么至少需要n个点才能遍及所有点,然后对于其余入度非0的点来说,必然是由其他点到达的,如果这个点不在环上,那么就必定是从一个入度为0的点来的;如果这个点在环上,这个环中的所有点也会由其余入度为0的点到达;假设这是个单独的环,那么答案为1。

第二个问题要求所有点都互相可以到达。那么我们可以知道的是,图中必然不会存在入度为0以及出度为0的点,假设这两者的个数分别为n,m。

那么最优的连边方法就是入度为0的点与出度为0的点匹配,最后剩下的乱连就行了,所以最后答案就是max(n,m)。证明的话yy一下吧。

因为我们刚才是基于有向无环图来思考的,环的存在应该把它当作一个点,所以考虑Tarjan缩波点就行了。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
using namespace std;
typedef long long ll;
const int N = ;
int n,tot;
int head[N],in[N],out[N],low[N],dfn[N],vis[N],scc[N];
struct Edge{
int u,v,next;
}e[N*N<<],edge[N*N<<];
void adde(int u,int v){
e[tot].u=u;e[tot].v=v;e[tot].next=head[u];head[u]=tot++;
}
stack <int> s;
int T,num;
void Tarjan(int u){
dfn[u]=low[u]=++T;vis[u]=;
s.push(u);
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(!vis[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(!scc[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
num++;int now;
do{
now = s.top();s.pop();
scc[now]=num;
}while(!s.empty() && now!=u);
}
}
int main(){
scanf("%d",&n);
int m=;
memset(head,-,sizeof(head));
for(int i=;i<=n;i++){
int v;
while(scanf("%d",&v)!=EOF){
if(v==) break ;
edge[++m].u=i;edge[m].v=v;
adde(i,v);
}
}
//cout<<m<<endl;
for(int i=;i<=n;i++){
if(!vis[i]) Tarjan(i);
}
for(int i=;i<=m;i++){
int u=edge[i].u,v=edge[i].v;
if(scc[u]!=scc[v]){
in[scc[v]]++;out[scc[u]]++;
}
}
int cnt1=,cnt2=;
for(int i=;i<=num;i++){
if(!in[i]) cnt1++;
if(!out[i]) cnt2++;
}
//cout<<num<<endl;
if(num==) cout<<<<endl<<;
else cout<<cnt1<<endl<<max(cnt2,cnt1);
return ;
}

POJ1236:Network of Schools (思维+Tarjan缩点)的更多相关文章

  1. POJ1236:Network of Schools(tarjan+缩点)?

    题目: http://poj.org/problem?id=1236 [题意] N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,问题1 ...

  2. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  3. poj 1236 Network of Schools(tarjan+缩点)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

  4. POJ1236 Network of Schools —— 强连通分量 + 缩点 + 入出度

    题目链接:http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  5. P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools

    P2746 [USACO5.3]校园网Network of Schools// POJ1236: Network of Schools 题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学 ...

  6. poj1236 Network of Schools【强连通分量(tarjan)缩点】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4316263.html  ---by 墨染之樱花 [题目链接]http://poj.org/pr ...

  7. POJ1236 - Network of Schools tarjan

                                                     Network of Schools Time Limit: 1000MS   Memory Limi ...

  8. POJ1236 Network of Schools (强连通)(缩点)

                                                                Network of Schools Time Limit: 1000MS   ...

  9. POJ-1236 Network of Schools,人生第一道Tarjan....

    Network of Schools 题意:若干个学校组成一个计算机网络系统,一个学校作为出发端连接着若干个学校,信息可以传送到这些学校.被链接的学校不需要再次与出发端相连,现在问你:A:最少选几个学 ...

随机推荐

  1. java 流 文件 IO

    Java 流(Stream).文件(File)和IO Java.io 包几乎包含了所有操作输入.输出需要的类.所有这些流类代表了输入源和输出目标. Java.io 包中的流支持很多种格式,比如:基本类 ...

  2. Java进阶知识点:更优雅地关闭资源 - try-with-resource

    一.背景 我们知道,在Java编程过程中,如果打开了外部资源(文件.数据库连接.网络连接等),我们必须在这些外部资源使用完毕后,手动关闭它们.因为外部资源不由JVM管理,无法享用JVM的垃圾回收机制, ...

  3. LeetCode 94 ——二叉树的中序遍历

    1. 题目 2. 解答 2.1. 递归法 定义一个存放树中数据的向量 data,从根节点开始,如果节点不为空,那么 递归得到其左子树的数据向量 temp,将 temp 合并到 data 中去 将当前节 ...

  4. JavaScript筑基篇(二)->JavaScript数据类型

    说明 介绍JavaScript数据类型 目录 前言 参考来源 前置技术要求 JavaScript的6种数据类型 哪6种数据类型 undefined 类型 null 类型 boolean 类型 numb ...

  5. df -h 卡住

    mount 检查是否有挂载nfs的分区       网络挂载     如果有请umount  -l   /相应目录      umount -l  10.74.82.205:/letv/fet/nfs ...

  6. Thunder团队第二周 - Scrum会议1

    Scrum会议1 小组名称:Thunder 项目名称:爱阅app Scrum Master:王航 工作照片: 参会成员: 王航(Master):http://www.cnblogs.com/wangh ...

  7. Spark GraphX 2

    顶点:VertexRDD   边:EdgeRDD.Edge.EdgeDirection   Triplet:EdgeTriplet   存储:PartitionStrategy 通常的存储方式有两种: ...

  8. Java中的增强for循环

    增强 for 循环 1. 增强的 for 循环对于遍历 Array 或 Collection 的时候相当方便. import java.util.*; public class Test { publ ...

  9. iOS开发Interface Builder技巧

    1.使view的Size与view中的Content相适应:选中任意的一个view,然后Editor->Size to Fit Content,或者简单的按 ⌘=接着就会按照下面的规则对选中vi ...

  10. QT分析之网络编程

    原文地址:http://blog.163.com/net_worm/blog/static/127702419201002842553382/ 首先对Windows下的网络编程总结一下: 如果是服务器 ...