不要被线段树这个名字和其长长的代码吓到。

D - Balanced Lineup

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1..Q:
Each line contains a single integer that is a response to a reply and
indicates the difference in height between the tallest and shortest cow
in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

线段树主要的是个树结构,多用于区间修改,查询。修改查询的时间复杂度都为O(long n),是一个很理想的复杂度。

一般输入数据比较多,所以用cin要关闭流同步,或者用scanf,当然最推荐的还是快读。

/*
线段树:区间查询最大最小值
*/ #include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 50020; //总节点数 struct node {
int l, r;
int maxx; //区间最大值
int minx; //区间最小值
}tree[4*maxn]; //总节点数 最坏情况下是4*maxn int n, m, t; inline int read() { //快读
int i = 0, j = 1;
char ch = getchar();
while (ch<'0' || ch>'9') { if (ch == '-')j = -1; ch = getchar(); }
while (ch >= '0'&&ch <= '9') i = i * 10 + ch - '0', ch = getchar();
return i*j;
} void buildtree(int p, int l, int r) { //建树&更新节点
tree[p].l = l; //初始化
tree[p].r = r; //每个节点的左右区间,就是传入的l,r
tree[p].maxx = -1; //把最大值赋值为-1
tree[p].minx = 1e9; //给minx赋值一个在题目中最大的值 if (l == r) { //l==r 代表是叶子节点
tree[p].maxx = tree[p].minx = read();
return;
} int mid = l + r >> 1; //不是叶子节点,就把区间分开 左儿子比右儿子多 (1+5)/2=3 ==> [1~3]--[4~5]
buildtree(p * 2, l, mid); //左区间树
buildtree(p * 2+1, mid + 1, r); //右区间树 tree[p].maxx = max(tree[p * 2].maxx, tree[p * 2 + 1].maxx); //节点的最大值,就是两个儿子节点的最大值
tree[p].minx = min(tree[p * 2].minx, tree[p * 2 + 1].minx); //同理
} int findmax(int p, int x, int y) //查找最大值
{
if (x<=tree[p].l&&tree[p].r <= y) //为什么是<=而不是==,这里是与下边匹配的。
return tree[p].maxx; int Max = -1, mid = (tree[p].l + tree[p].r) / 2;
if (x <= mid)
Max = max(Max, findmax(2 * p, x, y)); //搜索左区间,区间范围仍然是x~y,所以上边是<=
if (y > mid)
Max = max(Max, findmax(2 * p + 1, x, y)); //搜索右区间。
return Max; } int findmin(int p, int x, int y) { //查找最小值 同查找最大值
if (tree[p].l >= x&&tree[p].r <= y)
return tree[p].minx;
int Min = 1e9, mid = (tree[p].l + tree[p].r) / 2;
if (x <= mid)
Min = min(Min, findmin(p * 2, x, y));
if (y > mid)
Min = min(Min, findmin(p * 2 + 1, x, y));
return Min;
} int main() { cin >> n >> m; buildtree(1, 1, n); //可以把输入放在建树里边, int x, y;
for (int i = 0; i < m; i++) {
x = read();
y = read();
cout << findmax(1, x, y)-findmin(1, x, y) << endl;
}
return 0;
}

RMQ,蒟蒻博主还不会。

Balanced Lineup:线段树:区间最值 / RMQ的更多相关文章

  1. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  2. BZOJ-1699 Balanced Lineup 线段树区间最大差值

    Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...

  3. POJ3264 Balanced Lineup 线段树区间最大值 最小值

    Q个数 问区间最大值-区间最小值 // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <i ...

  4. 【bzoj4695】最假女选手 线段树区间最值操作

    题目描述 给定一个长度为 N 序列,编号从 1 到 N .要求支持下面几种操作:1.给一个区间[L,R] 加上一个数x 2.把一个区间[L,R] 里小于x 的数变成x 3.把一个区间[L,R] 里大于 ...

  5. 【bzoj4355】Play with sequence 线段树区间最值操作

    题目描述 维护一个长度为N的序列a,现在有三种操作: 1)给出参数U,V,C,将a[U],a[U+1],...,a[V-1],a[V]都赋值为C. 2)给出参数U,V,C,对于区间[U,V]里的每个数 ...

  6. 【hdu5306】Gorgeous Sequence 线段树区间最值操作

    题目描述 给你一个序列,支持三种操作: $0\ x\ y\ t$ :将 $[x,y]$ 内大于 $t$ 的数变为 $t$ :$1\ x\ y$ :求 $[x,y]$ 内所有数的最大值:$2\ x\ y ...

  7. HUD.2795 Billboard ( 线段树 区间最值 单点更新 单点查询 建树技巧)

    HUD.2795 Billboard ( 线段树 区间最值 单点更新 单点查询 建树技巧) 题意分析 题目大意:一个h*w的公告牌,要在其上贴公告. 输入的是1*wi的w值,这些是公告的尺寸. 贴公告 ...

  8. cf834D(dp+线段树区间最值,区间更新)

    题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...

  9. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  10. nyoj 119士兵杀敌(三)(线段树区间最值查询,RMQ算法)

    题目119 题目信息 执行结果 本题排行 讨论区 士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描写叙述 南将军统率着N个士兵,士兵分别编号为1~N,南将军常 ...

随机推荐

  1. unittest单元测试框架之测试结果输出到外部文件(四)

    1.test_suit执行测试用例及输出结果前 添加如下代码(打开会新建d:/result.txt文件): with open("d:\\result.txt","a&q ...

  2. Xcode 9.3 pod install update 错误

    [!] Oh no, an error occurred. Search for existing GitHub issues similar to yours: https://github.com ...

  3. HDU 1411--校庆神秘建筑(欧拉四面体体积计算)

    校庆神秘建筑 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  4. wait();notify();简单例子

    public class Test1{ /** * @param args */ public static void main(String[] args) { new Thread(new Thr ...

  5. 在java程序中使用JDBC连接mysql数据库

    在java程序中我们时常会用到数据库中的数据或操作数据库中的数据,如果java程序没有和我们得数据库连接,就不能实现在java程序中直接操作数据库.使用jdbc就能将java程序和数据库连起来,此时我 ...

  6. IO流之字符流

    字符流产生的原因: 1.每次只能够读取一个字节或者一个字节数组,每次在需要转换成字符或者字符串的时候不是很方便2.不同的操作系统针对换行符的处理不方便3.有的时候会出现中文乱码(中文占两个字节,如果针 ...

  7. flask的查询,一对多,多对多

    模型的关联: 一对多 class Role(db.Model): us = db.relationship('User',backref='role',lazy='dynamic') class Us ...

  8. 『Python基础-8』列表

    『Python基础-8』列表 1. 列表的基本概念 列表让你能够在一个地方存储成组的信息,其中可以只包含几个 元素,也可以包含数百万个元素. 列表由一系列按特定顺序排列的元素组成.你可以创建包含字母表 ...

  9. %.*lf控制输出长度

    #include<stdio.h> int main(){    int a,b,c;    while(scanf("%d%d%d",&a,&b,&a ...

  10. day 3 创建窗口,移动-函数版

    1.创建窗口 #-*- coding:utf-8 -*- import pygame import time def main(): #1.创建窗口 screen = pygame.display.s ...