Educational Codeforces Round 9 E. Thief in a Shop dp fft
E. Thief in a Shop
题目连接:
http://www.codeforces.com/contest/632/problem/E
Description
A thief made his way to a shop.
As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.
The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).
Find all the possible total costs of products the thief can nick into his knapsack.
Input
The first line contains two integers n and k (1 ≤ n, k ≤ 1000) — the number of kinds of products and the number of products the thief will take.
The second line contains n integers ai (1 ≤ ai ≤ 1000) — the costs of products for kinds from 1 to n.
Output
Print the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.
Sample Input
3 2
1 2 3
Sample Output
2 3 4 5 6
Hint
题意
有n个数,然后这n个数里面选k个加起来
问你一共能加出来多少种
题解:
多项式加法,加k次,问你最后的数是哪些,显然FFT模板,然后怼一波
其实DP也是可以兹瓷的。
dp[i]表示最少用多少个非a[1]能够构成a[1]*k+i的。
DP代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e3+5;
int n,k,a[maxn],dp[maxn*maxn];
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+1+n);
n=unique(a+1,a+1+n)-(a+1);
for(int i=2;i<=n;i++)
a[i]=a[i]-a[1];
for(int i=1;i<=k*a[n];i++)
dp[i]=k+1;
for(int i=2;i<=n;i++)
for(int j=a[i];j<=k*a[i];j++)
dp[j]=min(dp[j],dp[j-a[i]]+1);
for(int i=0;i<=k*a[n];i++)
if(dp[i]<=k)
printf("%d ",a[1]*k+i);
return 0;
}
FFT代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1<<21;
const double PI = acos(-1.0);
struct Virt
{
double r,i;
Virt(double r = 0.0,double i = 0.0)
{
this->r = r;
this->i = i;
}
Virt operator + (const Virt &x)
{
return Virt(r+x.r,i+x.i);
}
Virt operator - (const Virt &x)
{
return Virt(r-x.r,i-x.i);
}
Virt operator * (const Virt &x)
{
return Virt(r*x.r-i*x.i,i*x.r+r*x.i);
}
};
//雷德算法--倒位序
void Rader(Virt F[],int len)
{
int j = len >> 1;
for(int i=1; i<len-1; i++)
{
if(i < j) swap(F[i], F[j]);
int k = len >> 1;
while(j >= k)
{
j -= k;
k >>= 1;
}
if(j < k) j += k;
}
}
//FFT实现
void FFT(Virt F[],int len,int on)
{
Rader(F,len);
for(int h=2; h<=len; h<<=1) //分治后计算长度为h的DFT
{
Virt wn(cos(-on*2*PI/h),sin(-on*2*PI/h)); //单位复根e^(2*PI/m)用欧拉公式展开
for(int j=0; j<len; j+=h)
{
Virt w(1,0); //旋转因子
for(int k=j; k<j+h/2; k++)
{
Virt u = F[k];
Virt t = w*F[k+h/2];
F[k] = u+t; //蝴蝶合并操作
F[k+h/2] = u-t;
w = w*wn; //更新旋转因子
}
}
}
if(on == -1)
for(int i=0; i<len; i++)
F[i].r /= len;
}
//求卷积
void Conv(Virt F[],Virt G[],int len)
{
FFT(F,len,1);
FFT(G,len,1);
for(int i=0; i<len; i++)
F[i] = F[i]*G[i];
FFT(F,len,-1);
}
int mx = 0;
bool dp[maxn];
bool a[maxn];
Virt K1[maxn],K2[maxn];
void multiply(bool *A,bool *B,int l)
{
int len = 1;
while(len<=l+1)len*=2;
for(int i=0;i<len;i++)
{
K1[i].r=A[i];
K1[i].i=0;
K2[i].r=B[i];
K2[i].i=0;
}
Conv(K1,K2,len);
for(int i=0;i<=len;i++)
A[i]=K1[i].r>0.5;
}
void solve(int k)
{
if(k==0)
{
dp[0]=true;
}
else if(k%2==1)
{
solve(k-1);
multiply(dp,a,mx);
}
else
{
solve(k/2);
multiply(dp,dp,mx);
}
}
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++)
{
int x;scanf("%d",&x);
a[x]=true;mx=max(mx,x);
}
mx*=k;
solve(k);
for(int i=1;i<=mx;i++)
if(dp[i])printf("%d ",i);
cout<<endl;
}
Educational Codeforces Round 9 E. Thief in a Shop dp fft的更多相关文章
- codeforces Educational Codeforces Round 9 E - Thief in a Shop
E - Thief in a Shop 题目大意:给你n ( n <= 1000)个物品每个物品的价值为ai (ai <= 1000),你只能恰好取k个物品,问你能组成哪些价值. 思路:我 ...
- Educational Codeforces Round 9 E. Thief in a Shop NTT
E. Thief in a Shop A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...
- [Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)
Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array time limit per test 2 seconds ...
- Educational Codeforces Round 58 (Rated for Div. 2) F dp + 优化(新坑) + 离线处理
https://codeforces.com/contest/1101/problem/F 题意 有n个城市,m辆卡车,每辆卡车有起点\(s_i\),终点\(f_i\),每公里油耗\(c_i\),可加 ...
- Educational Codeforces Round 63 (Rated for Div. 2) D dp(最大连续子序列)
https://codeforces.com/contest/1155/problem/D 题意 一个n个数的数组\(a[i]\),可以选择连续的一段乘x,求最大连续子序列的值 题解 错误思路:贪心, ...
- Educational Codeforces Round 57 (Rated for Div. 2) D dp
https://codeforces.com/contest/1096/problem/D 题意 给一个串s,删掉一个字符的代价为a[i],问使得s的子串不含"hard"的最小代价 ...
- Educational Codeforces Round 16 E. Generate a String (DP)
Generate a String 题目链接: http://codeforces.com/contest/710/problem/E Description zscoder wants to gen ...
- Educational Codeforces Round 76 (Rated for Div. 2)E(dp||贪心||题解写法)
题:https://codeforces.com/contest/1257/problem/E 题意:给定3个数组,可行操作:每个数都可以跳到另外俩个数组中去,实行多步操作后使三个数组拼接起来形成升序 ...
- Educational Codeforces Round 13 E. Another Sith Tournament 概率dp+状压
题目链接: 题目 E. Another Sith Tournament time limit per test2.5 seconds memory limit per test256 megabyte ...
随机推荐
- python urllib2练习发送简单post
import urllib2 import urllib url = 'http://localhost/1.php' while True: data = raw_input('(ctrl+c ex ...
- 日常开发技巧:在远程机器上直接使用adb
背景 嵌入式开发中,开发工作是在远程服务器上进行的.当需要adb推送一个文件到开发板时,则需要重新在本地机器中找到该文件,再执行命令.这样的操作比较麻烦. 下面介绍我的解决方式. sshfs挂载 首先 ...
- Linux后台研发面试题
本系列给出了在复习过程中一些C++后台相关面试题,回答内容按照笔者的知识点掌握,故有些问题回答较为简略 1.信号的生命周期 一个完整的信号生命周期可以用四个事件刻画:1)信号诞生:2)信号在进程中注册 ...
- python基础===利用PyCharm进行Python远程调试(转)
原文链接:利用PyCharm进行Python远程调试 背景描述 有时候Python应用的代码在本地开发环境运行十分正常,但是放到线上以后却出现了莫名其妙的异常,经过再三排查以后还是找不到问题原因,于是 ...
- 【Java基础】一些问题
1. HashSet是如何保证数据不重复的: 首先,HashSet添加元素的时候,底层是通过HashMap的put方法来实现的,而添加的元素,则是保存在了hashMap的key里,因为HashMap的 ...
- HIbernate学习笔记5 之 查询
一.HQL查询 * 按条件查询,条件中写的是属性名,之后在query对象为添加赋值,如: String hql = " from User where uid=?"; Sessio ...
- find命令的基本用法
linux 中find 常用示例解析 find [-H] [-L] [-P] [-D debugopts] [-Olevel] [path…] [expression] 其实[-H] [-L] [- ...
- 每一对顶点间最短路径的Floyd算法
Floyd思想可用下式描述: A-1[i][j]=gm[i][j] A(k+1)[i][j]=min{Ak[i][j],Ak[i][k+1]+Ak[K+1][j]} -1<=k<=n ...
- php api接口校验规则示例
1.发送 /** * 客户端请求 * @param url 接口地址 * @param array $params(post) * @return json * @throws Exception * ...
- 转:python cgi编程
转:http://www.runoob.com/Python/python-cgi.html 什么是CGI CGI 目前由NCSA维护,NCSA定义CGI如下: CGI(Common Gateway ...