bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法
[HNOI2008]神奇的国度
Time Limit: 20 Sec Memory Limit: 162 MB
Submit: 4370 Solved: 2041
[Submit][Status][Discuss]
Description
K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA
相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.所谓N边关系,是指N个人 A1A2
...An之间仅存在N对认识关系:(A1A2)(A2A3)...(AnA1),而没有其它认识关系.比如四边关系指ABCD四个人 AB,BC,C
D,DA相互认识,而AC,BD不认识.全民比赛时,为了防止做弊,规定任意一对相互认识的人不得在一队,国王相知道,
最少可以分多少支队。
Input
第一行两个整数N,M。1<=N<=10000,1<=M<=1000000.表示有N个人,M对认识关系. 接下来M行每行输入一对朋
友
Output
输出一个整数,最少可以分多少队
Sample Input
1 2
1 4
2 4
2 3
3 4
Sample Output
HINT
一种方案(1,3)(2)(4)
题解:
这个图是个弦图,应该没什么问题,然后弦图的性质就是最小染色数=极大团数,所以但是这里的话,貌似没什么关系,只需要进行
一次最大势算法就可以了,可以做到O(n),但是这里还是用堆维护一下比较好。
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue>
#include<vector> #define fzy pair<int,int>
#define N 10007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m;
int a[N],b[N],label[N];
vector<int>arc[N];
priority_queue<fzy,vector<fzy> >p; void color_solve()
{
memset(a,-,sizeof(a));
memset(label,,sizeof(label));
for (int i=;i<=n;i++)
p.push(make_pair(,i));
for (int cnt=n;cnt>=;)
{
int id=p.top().second;
p.pop();
if (a[id]!=-) continue;
b[cnt]=id,a[id]=cnt--;
for (int i=,len=arc[id].size();i<len;i++)
{
int u=arc[id][i];
if (a[u]!=-) continue;
label[u]++;
p.push(make_pair(label[u],u));
}
}
}
void Color(int u)
{
for (int i=,len=arc[u].size();i<len;i++)
{
int v=arc[u][i];
if (label[v]==-) continue;
a[label[v]]=u;
}
for (int i=;label[u]==-;i++)
if (a[i]!=u) label[u]=i;
}
int color_count()
{
memset(a,-,sizeof(a));
memset(label,-,sizeof(label));
for (int i=n;i>=;i--)
Color(b[i]);
int ans=;
for (int i=;i<=n;i++)
ans=max(ans,label[i]);
return ans;
}
int main()
{
n=read(),m=read();
for (int i=;i<=n;i++) arc[i].clear();
for (int i=;i<=m;i++)
{
int x=read(),y=read();
arc[x].push_back(y);
arc[y].push_back(x);
}
color_solve();
printf("%d\n",color_count());
}
bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法的更多相关文章
- bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1788 Solved: 775[Submit][Stat ...
- bzoj 1006: [HNOI2008]神奇的国度 -- 弦图(最大势算法)
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MB Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角 ...
- ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net
●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...
- BZOJ 1006: [HNOI2008]神奇的国度(弦图)
传送门 解题思路 弦图就是图中任意一个大小\(>=4\)的环至少存在一条两个节点不相邻的边,这样的图称为弦图,弦图有许多优美的性质.一个无向图是弦图当且仅当它有一个完美消除序列,完美消除序列就是 ...
- 【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题
1006: [HNOI2008]神奇的国度 Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的 ...
- BZOJ 1006 [HNOI2008] 神奇的国度(简单弦图的染色)
题目大意 K 国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即 AB 相互认识,BC 相互认识,CA 相互认识,是简洁高效的.为了巩固三角关系,K 国禁止四边关系,五边关系等 ...
- [BZOJ 1006] [HNOI2008] 神奇的国度 【弦图最小染色】
题目链接: BZOJ - 1006 题目分析 这道题是一个弦图最小染色数的裸的模型. 弦图的最小染色求法,先求出弦图的完美消除序列(MCS算法),再按照完美消除序列,从后向前倒着,给每个点染能染的最小 ...
- BZOJ 1006: [HNOI2008]神奇的国度( MCS )
弦图最小染色...先用MCS求出完美消除序列然后再暴力染色... ------------------------------------------------------------------- ...
- BZOJ 1006: [HNOI2008]神奇的国度(弦图染色)
http://www.lydsy.com/JudgeOnline/problem.php?id=1006 题意: 思路: 这个就是弦图染色问题,弦图啥的反正我也不懂,具体看论文https://wenk ...
随机推荐
- 脚本 script 常用脚本
目录 remove_all_pyc find_all_links rename_with_slice load_json_without_dupes execution_time benchmark_ ...
- Python3 Tkinter-Canvas
1.创建 from tkinter import * root=Tk() cv=Canvas(root,bg='black') cv.pack() root.mainloop() 2.创建item f ...
- Ext JS 6学习文档-第8章-主题和响应式设计
Ext JS 6学习文档-第8章-主题和响应式设计 主题和响应式设计 本章重点在 ExtJS 应用的主题和响应式设计.主要有以下几点内容: SASS 介绍和入门 主题 响应式设计 SASS 介绍和入门 ...
- Hadoop,MapReduce操作Mysql
前以前帖子介绍,怎样读取文本数据源和多个数据源的合并:http://www.cnblogs.com/liqizhou/archive/2012/05/15/2501835.html 这一个博客介绍一下 ...
- lintcode-39-恢复旋转排序数组
39-恢复旋转排序数组 给定一个旋转排序数组,在原地恢复其排序. 说明 什么是旋转数组? 比如,原始数组为[1,2,3,4], 则其旋转数组可以是[1,2,3,4], [2,3,4,1], [3,4, ...
- LintCode-61.搜索区间
搜索区间 给定一个包含 n 个整数的排序数组,找出给定目标值 target 的起始和结束位置. 如果目标值不在数组中,则返回[-1, -1] 样例 给出[5, 7, 7, 8, 8, 10]和目标值t ...
- 《学习OpenCV》课后习题解答6
题目:(P104) 使用cvCmp()创建一个掩码.加载一个真实的图像.使用cvsplit()将图像分割成红,绿,蓝三个单通道图像. a.找到并显示绿图. b.克隆这个绿图两次(分别命名为clone1 ...
- Android各分辨率定义的图片规格
我们定义的app图片规格 app图标需要分iphone和android两套 iphone: 名称 Iphone4 Iphone5 手机尺寸 960*640(高*宽) 1136*640 (高*宽) 电池 ...
- 【WCF】WCF 附录 高级主题 配置服务配额设置
微软产品自带一个“默认安全”方案.这也包括了WCF,意味着WCF中的多种配置可以设置来阻止诸如DOS(拒绝服务访问)攻击.微软为很多基于一个单一计算机的开发环境选择这样的设置.这也意味着默认设置中的一 ...
- P4316 绿豆蛙的归宿
题意翻译 「Poetize3」 题目背景 随着新版百度空间的上线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 题目描述 给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出 ...