PCA误差
我们知道,PCA是用于对数据做降维的,我们一般用PCA把m维的数据降到k维(k < m)。
那么问题来了,k取值多少才合适呢?
PCA误差
PCA
的原理是,为了将数据从n维降低到k维,需要找到k个向量,用于投影原始数据,是投影误差(投影距离)最小。
用公式来表示,如下
其中
- m表示特征个数
分子表示原始点与投影点之间的距离之和,而误差越小,说明降维后的数据越能完整表示降维前的数据。如果这个误差小于0.01,说明降维后的数据能保留99%的信息。
k值选取的原理
实际应用中,我们一般根据上式,选择能使误差小于0.01(99%的信息都被保留)或0.05(95%的信息都被保留)的k值。
而在实际编码中,参考文章《详解主成分分析PCA》,在PCA的实现过程中,对协方差矩阵
做奇异值分解
时,能得到S矩阵(特征值矩阵)。
PCA误差的表达式等效于下式
从代码示例中,可以看出,将数据从三维降到二维,保留了99.997%的信息。
[U,S,V] = np.linalg.svd(sigma) # 奇异值分解
(S[0]+S[1])/(S www.hbs90.cn/ www.boshenyl.cn [0]+S[1]+S[2])
# result = 0.99996991682077252
- 1
- 2
- 3
实际使用
用sklearn封装的PCA方法,做PCA的代码如下。PCA方法参数n_components,如果设置为整数,则n_components=k。如果将其设置为小数,则说明降维后的数据能保留的信息。
from sklearn.decomposition import PCA
import numpy as np
from sklearn.preprocessing import StandardScaler
x=np.array([[10001,2,55],www.feihuanyule.com [16020,4,11], [12008,6,33], [13131,8,22]])
# feature normalization (feature scaling)
X_scaler = StandardScaler()
x = X_scaler.fit_transform(x)
# PCA
pca = PCA(n_components=0.9)# 保证降维后的数据保持90%的信息
pca.fit(x)
pca.transform(x
所以在实际使用PCA时,我们不需要选择k,而是直接设置n_components为float数据。
总结
PCA主成分数量k的选择,是一个数据压缩的问题。通常我们直接将sklearn中PCA方法参数n_components设置为float数据,来间接解决k值选取问题。
但有的时候我们降维只是为了观测数据(visualization),这种情况下一般将k选择为2或3。
参考
- Andrew NG在coursera的机器学习课程
- PCA的完整实现过程代码详解
- http://stackoverflow.com/questions/33509074/sklearn-pca-calculate-of-variance-retained-for-choosing-k
PCA误差的更多相关文章
- Stanford机器学习笔记-10. 降维(Dimensionality Reduction)
10. Dimensionality Reduction Content 10. Dimensionality Reduction 10.1 Motivation 10.1.1 Motivation ...
- PCA算法的最小平方误差解释
PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点 ...
- 机器学习基础与实践(三)----数据降维之PCA
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...
- PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...
- PCA 主成分分析(Principal components analysis )
问题 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列, ...
- 机器学习公开课笔记(8):k-means聚类和PCA降维
K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis ...
- 主元分析PCA理论分析及应用
首先,必须说明的是,这篇文章是完完全全复制百度文库当中的一篇文章.本人之前对PCA比较好奇,在看到这篇文章之后发现其对PCA的描述非常详细,因此迫不及待要跟大家分享一下,希望同样对PCA比较困惑的朋友 ...
- 四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映 ...
- (六)6.6 Neurons Networks PCA
主成分分析(PCA)是一种经典的降维算法,基于基变换,数据原来位于标准坐标基下,将其投影到前k个最大特征值对应的特征向量所组成的基上,使得数据在新基各个维度有最大的方差,且在新基的各个维度上数据是不相 ...
随机推荐
- 深入解析UUID及其应用(转载)
UUID 编辑 UUID含义是通用唯一识别码 (Universally Unique Identifier),这 是一个软件建构的标准,也是被开源软件基金会 (Open Software Founda ...
- OSG-阴影
本文转至http://www.cnblogs.com/shapherd/archive/2010/08/10/osg.html 作者写的比较好,再次收藏,希望更多的人可以看到这个文章 互联网是是一个相 ...
- Linux命令大全(非常全,史上最全)
最近学习Linux,最大的体验就是它的很多东西都需要由命令来进行控制,下面是我总结的一些命令,供大家参考: 系统信息 arch 显示机器的处理器架构 uname -m 显示机器的处理器架构 una ...
- 【WXS数据类型】Array
属性: 名称 值类型 说明 [Array].constructor [String] 返回值为“Array”,表示类型的结构字符串 [Array].length [Number] 返回数组长度 方法: ...
- C++错误:Process returned -1073741571 (0xC00000FD)
最近写程序时,需要将一个一维数组编程二维数组,很简单,写完之后,运行错误! 提示:Process returned -1073741571 (0xC00000FD) 刚开始写的代码如下: #inclu ...
- 82. Single Number [easy]
Description Given 2*n + 1 numbers, every numbers occurs twice except one, find it. Example Given [1, ...
- 关于excle导数据的一些代码笔记
package com.bonc.util; import java.io.File; import java.io.FileInputStream; import java.io.FileOutpu ...
- Python中的global和nonlocal
在Python中,一个变量的scope范围从小到大分成4部分:Local Scope(也可以看成是当前函数形成的scope),Enclosing Scope(简单来说,就是外层函数形成的scope), ...
- 20145214 《Java程序设计》第7周学习总结
20145214 <Java程序设计>第7周学习总结 教材学习内容总结 时间的度量 格林威治标准时间(GMT),现已不作为标准时间使用,即使标注为GMT(格林威治时间),实际上谈到的的是U ...
- 最多水容器(M)
题目 给定n个非负整数a 1,a 2,...,a n,其中每个代表坐标(i,a i)处的一个点.绘制n条垂直线,使得线i的两个端点处于(i,a i)和(i,0)处.找到两条线,它们与x轴一起形成一个容 ...