https://www.lydsy.com/JudgeOnline/problem.php?id=1509

https://www.luogu.org/problemnew/show/P4408

sb题,但是我至今不知道为什么这张图就一定是棵树……这题意没说明白啊……

显然求直径,再求一点使得该点到直径两端的点的距离的最小值最大。

没有什么好方法,最后一个点只能暴力,所以我们预处理两端点到每个点的dis即可。

于是我们两遍bfs求直径,顺道就给做了就行。

(然后我不会bfs求直径,我只会dp求……)

#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll INF=1e18;
const int N=2e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt,w;
}e[N*];
int n,m,cnt,head[N];
ll dis[][N];
bool vis[N];
queue<int>q;
inline void add(int u,int v,int w){
e[++cnt].to=v;e[cnt].w=w;e[cnt].nxt=head[u];head[u]=cnt;
}
int bfs(int s,int on){
for(int i=;i<=n;i++)dis[on][i]=INF;
dis[on][s]=;vis[s]=;q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to,w=e[i].w;
if(dis[on][v]>dis[on][u]+w){
dis[on][v]=dis[on][u]+w;
if(vis[v])continue;
vis[v]=;q.push(v);
}
}
vis[u]=;
}
ll maxn=;int id;
for(int i=;i<=n;i++){
if(maxn<dis[on][i]){
maxn=dis[on][i];id=i;
}
}
return id;
}
int main(){
n=read(),m=read();
for(int i=;i<=m;i++){
int u=read(),v=read(),w=read();
add(u,v,w);add(v,u,w);
}
int a,b;
a=bfs(,);b=bfs(a,);bfs(b,);
ll ans=;
for(int i=;i<=n;i++){
ans=max(ans,min(dis[][i],dis[][i]));
}
printf("%lld\n",ans+dis[][b]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1509 & 洛谷4408:[NOI2003]逃学的小孩——题解的更多相关文章

  1. 洛谷 P4408 [NOI2003] 逃学的小孩 题解

    Analysis 题意虽然说先去谁家再去谁家,但是我们不需要管这个,因为AA.BB.CC三个点我们可以任意互相交换它们所代表的对象,所以题目要求的就是在一棵树上找到3个点AA.BB.CC令AB+BCA ...

  2. 洛谷 P4408 [NOI2003]逃学的小孩

    题目传送门 题目描述 Chris家的电话铃响起了,里面传出了Chris的老师焦急的声音:“喂,是Chris的家长吗?你们的孩子又没来上课,不想参加考试了吗?”一听说要考试,Chris的父母就心急如焚, ...

  3. 洛谷P4408 [NOI2003] 逃学的小孩 (树的直径)

    本题就是从c到a/b再到b/a距离的最大值,显然,a和b分别是树的直径的两个端点,先用两次dfs求出树的直径,再用一次dfs求出每个点到a的距离,最后再用一次dfs求出每个点到距离它较近的a/b的距离 ...

  4. [NOI2003]逃学的小孩 题解

    前言 >原题传送门(洛谷)< 看了一下洛谷题面,这道NOI的题竟然是蓝的(恶评?),做了一下好像确实是蓝的... 解法 思路非常简单,找道树的直径,然后答案是直径长度加上最大的min(di ...

  5. 【BZOJ1509】[NOI2003]逃学的小孩 直径

    [BZOJ1509][NOI2003]逃学的小孩 Description Input 第一行是两个整数N(3  N  200000)和M,分别表示居住点总数和街道总数.以下M行,每行给出一条街道的 ...

  6. BZOJ 1509: [NOI2003]逃学的小孩( 树形dp )

    树形dp求出某个点的最长3条链a,b,c(a>=b>=c), 然后以这个点为交点的最优解一定是a+2b+c.好像还有一种做法是求出树的直径然后乱搞... ----------------- ...

  7. [NOI2003]逃学的小孩(树的直径)

    [NOI2003]逃学的小孩 题目描述 Chris家的电话铃响起了,里面传出了Chris的老师焦急的声音:"喂,是Chris的家长吗?你们的孩子又没来上课,不想参加考试了吗?"一听 ...

  8. 洛谷P1854 花店橱窗布置 分析+题解代码

    洛谷P1854 花店橱窗布置 分析+题解代码 蒟蒻的第一道提高+/省选-,纪念一下. 题目描述: 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定 ...

  9. HAOI2006 (洛谷P2341)受欢迎的牛 题解

    HAOI2006 (洛谷P2341)受欢迎的牛 题解 题目描述 友情链接原题 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之 ...

随机推荐

  1. Omad群组部署、依赖部署一键解决

    本文来自网易云社区 作者:李培斌 前言 基于omad部署平台实现一键部署的实践已有很多成功的经验,杭研QA的技术先锋们也在ks圈里有很多不同的文章去阐述关于这类需求的实现和思路,当然包括我们金融事业部 ...

  2. selenium--driver.switchTo()

    在自动化测试中,会遇到多窗口.多iframe.多alert的情况.此时,会使用driver.switchTo()来解决. 下面时关于driver.switchTo()的详细介绍: 1.多windows ...

  3. fiddler不经意的功能

    捕获指定客户端的请求,直接食用 窗口分离,直接食用 Hide this column  隐藏此列Ensure all columns are visible   显示默认所有列Customize co ...

  4. Unity编辑器 - Rigidbody动力学Bake到AnimationClip

    Unity编辑器 - Rigidbody动力学Bake到AnimationClip Unity文档移动平台优化部分提到Physics对CPU的消耗较大 将动力学的特效如破碎等Bake成动画也是优化性能 ...

  5. 【转】VSstudio中的一些宏

    说明 $(RemoteMachine) 设置为“调试”属性页上“远程计算机”属性的值.有关更多信息,请参见更改用于 C/C++ 调试配置的项目设置. $(References) 以分号分隔的引用列表被 ...

  6. vue学习笔记(三):vue-cli脚手架搭建

    一:安装vue-cli脚手架: 1:为了确保你的node版本在4.*以上,输入 node -v 查看本机node版本,低于4请更新. 2:输入:  npm install -g vue-cli     ...

  7. Bacon's Cipher(培根密码)

    Description Bacon's cipher or the Baconian cipher is a method of steganography (a method of hiding a ...

  8. 实现虚拟机VMware上Centos的linux与windows互相复制与粘贴

    转自:http://blog.csdn.net/u012243115/article/details/40454063 1.打开虚拟机的菜单“虚拟机”,下拉框中会有一个“安装 VMwareTools” ...

  9. 一步步学敏捷开发:1、敏捷开发及Scrum介绍

    敏捷开发之 历史背景 20世纪60年代:软件作坊,软件规模小,以作坊式开发为主:70年代:软件危机,硬件飞速发展,软件规模和复杂度激增,引发软件危机:80年代:软件过程控制,引入成熟生产制造管理方法, ...

  10. 【IdentityServer4文档】- 支持和咨询选项

    支持和咨询选项 我们为 IdentityServer 提供多个免费和商业支持及咨询选项. 免费支持 免费支持是基于社区的,而且使用的是公共论坛 StackOverflow 有越来越多的使用 Ident ...