题目描述

给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小。

输入

先给出一个数字N,代表树上有N个点,N<=10000 下面N-1行,代表两个点相连

输出

最小的总权值

样例输入

10
7 5
1 2
1 7
8 9
4 1
9 7
5 6
10 2
9 3

样例输出

14


题解

树形dp

f[i][j]表示第i个点权值为j时i的子树的最小权值和。

一开始以为颜色数最多有n种,n^3的dp算法肯定是过不去,就算优化到n^2也还是会TLE。

然后网上有人说最多只会有logn种颜色。

虽然我证不出来,但感觉挺有道理,于是试了试,A了。

然而事实上经过测试,本题数据非常弱,最多也只有3种颜色,也就是直接循环到3即可。

好尴尬。

#include <cstdio>
#include <algorithm>
using namespace std;
int head[10010] , to[20010] , next[20010] , cnt , f[10010][18];
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
void dp(int x , int fa)
{
int i , j , k;
for(i = 1 ; i <= 17 ; i ++ )
f[x][i] = i;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa)
{
dp(to[i] , x);
for(j = 1 ; j <= 17 ; j ++ )
{
int s = 0x7fffffff;
for(k = 1 ; k <= 17 ; k ++ )
if(j != k)
s = min(s , f[to[i]][k]);
f[x][j] += s;
}
}
}
}
int main()
{
int n , i , x , y , ans = 0x7fffffff;
scanf("%d" , &n);
for(i = 1 ; i < n ; i ++ )
scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dp(1 , 0);
for(i = 1 ; i <= 17 ; i ++ )
ans = min(ans , f[1][i]);
printf("%d\n" , ans);
return 0;
}

【bzoj1369】[Baltic2003]Gem 树形dp的更多相关文章

  1. BZOJ1369:[Baltic2003]Gem(树形DP)

    Description 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小. Input 先给出一个 ...

  2. 【BZOJ-1369】Gem 树形DP

    1369: [Baltic2003]Gem Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 282  Solved: 180[Submit][Status] ...

  3. BZOJ 1369: [Baltic2003]Gem(树形dp)

    传送门 解题思路 直接按奇偶层染色是错的,\(WA\)了好几次,所以要树形\(dp\),感觉最多\(log\)种颜色,不太会证. 代码 #include<iostream> #includ ...

  4. BZOJ_1369_[Baltic2003]Gem_树形DP

    BZOJ_1369_[Baltic2003]Gem_树形DP Description 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值, ...

  5. BZOJ1369/LG4395 「BOI2003」Gem 树形DP

    问题描述 LG4395 BZOJ1369 题解 发现对于结点 \(x\) ,其父亲,自己,和所有的孩子权值不同,共 \(3\) 类,从贪心的角度考虑,肯定是填 \(1,2,3\) 这三种. 于是套路树 ...

  6. [bzoj1369][Baltic2003]Gem_树形dp_结论题

    Gem bzoj-1369 Baltic-2003 题目大意:给你一棵树,让你往节点上添自然数,使得任意相邻节点的数不同且使得权值最小. 注释:n为结点个数,$1\le n\le 10^3$. 想法: ...

  7. bzoj 1369: Gem 树形dp

    题目大意 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小.N<=10000 题解 我们可以 ...

  8. [BOI2003] Gem - 树形dp

    结论 不同颜色数不会超过 \(O(\log n)\) 然后就是很简单的树形dp了 顺便复习一下树形dp怎么写 #include <bits/stdc++.h> using namespac ...

  9. [bzoj1369] [Baltic2003]Gem

    结论题...一棵树里用到的颜色数不超过logn.. f[i][j]表示以i为根的子树里,i的颜色是j的方案数. g[i][j]表示max{f[i][k]},(k!=j #include<cstd ...

随机推荐

  1. 统一建模语言——UML

    一.UML概述 Unified Modeling Language (UML)又称统一建模语言或标准建模语言,是始于1997年一个OMG标准,它是一个支持模型化和软件系统开发的图形化语言,为软件开发的 ...

  2. git配置config记住密码

    设置记住密码(默认15分钟): git config --global credential.helper cache如果想自己设置时间,可以这样做: git config credential.he ...

  3. plsql解决中文乱码

    进入 我的电脑,属性,高级,环境变量,添加2项: 1.LANG=zh_CN.GBK 2.NLS_LANG=SIMPLIFIED CHINESE_CHINA.ZHS16GBK

  4. 【独家】K8S漏洞报告 | 近期bug fix解读&1.9.11主要bug fix汇总

    *内容提要: 1. Kube-proxy长连接优雅断开机制及IPVS模式实现 2. 10/29--11/19 bug fix汇总分析 3. 1.9.11重要bug fix汇总 在本周的跟踪分析中,以1 ...

  5. ElasticSearch-Java-low-level-rest-client官方文档翻译

    人肉翻译,非谷歌机翻,部分地方添加了个人的理解,并做了分割,如有错误请在评论指出.转载请指明原链接,尊重个人劳动成果.        High-Level-Rest-Client基于Low-Level ...

  6. python 终极篇 --- form组件 与 modelForm

                                                           form组件                                       ...

  7. javaee开发工具及环境配置过程

    在配置javaee开发环境的过程中遇到过很多问题,在此系统的整理一下我之前的配置过程 注:配置过程学习自<JSP&Servlet学习笔记(第二版)>详细过程可以阅读此书.在文章的最 ...

  8. 简单说明hadoop集群运行三种模式和配置文件

    Hadoop的运行模式分为3种:本地运行模式,伪分布运行模式,集群运行模式,相应概念如下: 1.独立模式即本地运行模式(standalone或local mode)无需运行任何守护进程(daemon) ...

  9. 概要梳理kafka知识点

    主要是梳理一下kafka学习中的一些注意点,按照消息的流动方向进行梳理.详细的kafka介绍推荐看骑着龙的羊的系列博客,具体的某一块的知识点,可以参考我给出的一些参考文章. 1. kafka在系统中的 ...

  10. LogisticRegression Algorithm——机器学习(西瓜书)读书笔记

    import numpy as np from sklearn.datasets import load_breast_cancer import sklearn.linear_model from ...