BZOJ1061:[NOI2008]志愿者招募——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1061
https://www.luogu.org/problemnew/show/P3980
申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。
(先吐槽这题说其他数据均不超过2^31-1,那么这题如果c=2^31-1,a=2^31-1,怕不是要爆longlong(滑稽))
一个非常奇妙的建图费用流。
开始想法是上下界费用流,然后对于每一天往汇点流一遍,然后对于能不能把人收回去这一个问题表示十分纠结于是弃疗。
考虑最开始S结点有INF,我们希望到T仍然有INF的流量,然而在经过每天的时候(比如在s天),很不幸,这条边权为INF-a[i],怎么办呢?我们就需要付钱c将一些流量传送到t+1(显然s~t天就会少需要这些人从而变相相当于这些人在s~t天内干活了)。
(当然如果最后得到的流量并非INF就说明无解了。)
……是的,这就是这道题的建图思路,十分的妙啊。
仔细思考一下,它有效规避了下界,人员持续工作与进入撤出的问题(实在不行感性画图一下)。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cctype>
#include<cstdio>
#include<queue>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=;
const int M=3e4+;
const int INF=1e9;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int nxt,to,w,b;
}edge[M];
int head[N],cnt=-;
inline void add(int u,int v,int w,int b){
edge[++cnt].to=v;edge[cnt].w=w;edge[cnt].b=b;
edge[cnt].nxt=head[u];head[u]=cnt;
edge[++cnt].to=u;edge[cnt].w=;edge[cnt].b=-b;
edge[cnt].nxt=head[v];head[v]=cnt;
}
int dis[N];
bool vis[N];
inline bool spfa(int s,int t,int n){
deque<int>q;
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++)dis[i]=INF;
dis[t]=;q.push_back(t);vis[t]=;
while(!q.empty()){
int u=q.front();
q.pop_front();vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
int b=edge[i].b;
if(edge[i^].w&&dis[v]>dis[u]-b){
dis[v]=dis[u]-b;
if(!vis[v]){
vis[v]=;
if(!q.empty()&&dis[v]<dis[q.front()]){
q.push_front(v);
}else{
q.push_back(v);
}
}
}
}
}
return dis[s]<INF;
}
int ans,cur[N];
int dfs(int u,int flow,int m){
if(u==m){
vis[m]=;
return flow;
}
int res=,delta;
vis[u]=;
for(int &e=cur[u];e!=-;e=edge[e].nxt){
int v=edge[e].to;
int b=edge[e].b;
if(!vis[v]&&edge[e].w&&dis[u]-b==dis[v]){
delta=dfs(v,min(edge[e].w,flow-res),m);
if(delta){
edge[e].w-=delta;
edge[e^].w+=delta;
res+=delta;
ans+=delta*b;
if(res==flow)break;
}
}
}
return res;
}
inline int costflow(int S,int T,int n){
int flow=;
while(spfa(S,T,n)){
do{
for(int i=;i<=n;i++)cur[i]=head[i];
memset(vis,,sizeof(vis));
flow+=dfs(S,INF,T);
}while(vis[T]);
}
return ans;
}
int main(){
memset(head,-,sizeof(head));
int n=read(),m=read(),S=n+,T=S+;
add(S,,INF,);
for(int i=;i<=n;i++){
add(i,i+,INF-read(),);
}
add(n+,T,INF,);
for(int i=;i<=m;i++){
int s=read(),t=read(),c=read();
add(s,t+,INF,c);
}
printf("%d\n",costflow(S,T,T));
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ1061:[NOI2008]志愿者招募——题解的更多相关文章
- [BZOJ1061][Noi2008]志愿者招募
[BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...
- 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募
线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...
- 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5291 Solved: 3173[Submit][Stat ...
- BZOJ1061 [Noi2008]志愿者招募 【单纯形】
题目链接 BZOJ1061 题解 今天终于用正宗的线性规划\(A\)了这道题 题目可以看做有\(N\)个限制和\(M\)个变量 变量\(x_i\)表示第\(i\)种志愿者的人数,对于第\(i\)种志愿 ...
- BZOJ1061: [Noi2008]志愿者招募(线性规划)
Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5725 Solved: 3437[Submit][Status][Discuss] Descript ...
- [BZOJ1061] [Noi2008] 志愿者招募 (费用流)
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...
- 【费用流】BZOJ1061[NOI2008]-志愿者招募
[题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...
- [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...
- BZOJ1061 NOI2008 志愿者招募 线性规划、费用流
传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...
随机推荐
- 浅析Win8/8.1下安装SQL Server 2005 出现服务项无法正常启动解决方案
如何才能在微软最新的Windows8/Windows 8.1下正常使用SQL Server 2005套件呢?下面就简单介绍利用文件替换法,解决其服务项无法正常启动的临时方案.当然还是建议使用SQL S ...
- thinkphp5使用workerman的定时器定时任务在某一个时间执行
1.首先通过 composer 安装workerman,在thinkphp5完全开发手册的扩展->coposer包->workerman有详细说明: #在项目根目录执行以下指令compos ...
- jQuery的图片懒加载
jQuery的图片懒加载 function imgLazyLoad(options) { var settings = { Id: $('img'), threshold: 100, effectsp ...
- python 文件编译成exe可执行文件。
pyinstaller打包方法: pyinstaller安装参考地址:http://www.pyinstaller.org/ pywin32的下载地址:https://sourceforge.net/ ...
- JavaScript 之 对象/JSON/数组
对象 简单说,所谓对象,就是一种无序的数据集合,由若干个“键值对”(key-value)构成. var obj = { p: 'Hello World' }; 上面代码中,大括号就定义了一个对象,它被 ...
- Paper Reading - Show, Attend and Tell: Neural Image Caption Generation with Visual Attention ( ICML 2015 )
Link of the Paper: https://arxiv.org/pdf/1502.03044.pdf Main Points: Encoder-Decoder Framework: Enco ...
- 创新手机游戏《3L》开发点滴(3)——道具、物品、装备表设计 V2(最终版)
我们正在开发一款新手游,里面有道具,之前也写了一篇博文记录了下我们的设计思路,但是国庆到了,于是我有了时间继续纠结这个问题. 其实我主要是在到底是用mysql还是mongodb上纠结.这个复杂.痛苦. ...
- 普通Java类获取Spring的Bean的方法
普通Java类获取Spring的Bean的方法 在SSH集成的前提下.某些情况我们需要在Action以外的类中来获得Spring所管理的Service对象. 之前我在网上找了好几好久都没有找到合适的方 ...
- POJ 1873 The Fortified Forest(枚举+凸包)
Description Once upon a time, in a faraway land, there lived a king. This king owned a small collect ...
- Thunder团队第六周 - Scrum会议3
Scrum会议3 小组名称:Thunder 项目名称:i阅app Scrum Master:李传康 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传 ...