poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 10141 | Accepted: 5031 |
Description
It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.
The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.
Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.
So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.
Input
The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 ton. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.
Output
One line, consisting of an integer, which gives the minimum number of roads that we need to add.
Sample Input
Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10 Sample Input 2
3 3
1 2
2 3
1 3
Sample Output
Output for Sample Input 1
2 Output for Sample Input 2
0 题意:有n个旅游景点和r条路,任意两个景点之间都间接或直接的连在一起,但是有时候道路施工时我们无法走这条路,也就是说两个景点之间的道路断了,问现在最少添加多少条通道,使任意两个景点之间都不止一条通道 题解:显而易见此题是让求最少添加多少条路使图双连通,因为所有的点都是相连的,只是不是双连通,我们可以把原始数据看做是一个双连通图去掉了几条边所变成的图形,现在我们需要将这几条边加上去,一个双连通图其度数至少为2,所以当我们遇见度数为1的点时记录下来,最后度数为1的点的总数(sum+1)/2就是最后结果 注意:输入输出真坑,本来以为每组输入和输出前都要输出字符串的 结果一直wa
#include<stdio.h>
#include<string.h>
#include<stack>
#include<algorithm>
#define MAX 21000
#include<vector>
#define MAXM 2001000
#define INF 0x7ffffff
using namespace std;
int n,m,num,bridge;
int head[MAX],ans;
int in[MAX];
int low[MAX],dfn[MAX];
int instack[MAX],iscut[MAX];
int addbcc[MAX];
int dfsclock,bccno[MAX];
int bcccnt;
stack<int>s;
vector<int>newmap[MAX];
vector<int>bcc[MAX];
struct node
{
int beg,end,next;
}edge[MAXM];
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[ans].beg=u;
edge[ans].end=v;
edge[ans].next=head[u];
head[u]=ans++;
}
void getmap()
{
int a,b,i;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
}
void tarjan(int u,int fa)
{
int i,j,v;
s.push(u);
instack[u]=1;
low[u]=dfn[u]=++dfsclock;
int son=0;
int flag=1;
for(i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].end;
if(v==fa&&flag)//去重边
{
flag=0;
continue;
}
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u])//是桥
bridge++;
}
else
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
bcccnt++;
while(1)
{
v=s.top();
s.pop();
instack[v]=0;
bccno[v]=bcccnt;
if(v==u)
break;
}
}
}
void find(int l,int r)
{
int i;
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
memset(iscut,0,sizeof(iscut));
dfsclock=bcccnt=0;
for(i=l;i<=r;i++)
{
if(!dfn[i])
tarjan(i,-1);
}
}
void suodian()
{
int u,v,i;
memset(in,0,sizeof(in));
for(i=0;i<ans;i+=2)
{
u=bccno[edge[i].beg];
v=bccno[edge[i].end];
if(v!=u)
{
newmap[u].push_back(v);
newmap[v].push_back(u);
in[u]++;
in[v]++;
}
}
}
void solve()
{
int sum,i,j;
sum=0;
for(i=1;i<=bcccnt;i++)
{
if(in[i]==1)
sum++;
}
printf("%d\n",(sum+1)/2);
}
int main()
{
int i,j,k,t;
k=1;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
getmap();
find(1,n);
suodian();
solve();
}
return 0;
}
poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】的更多相关文章
- POJ 1236--Network of Schools【scc缩点构图 && 求scc入度为0的个数 && 求最少加几条边使图变成强联通】
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13325 Accepted: 53 ...
- hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- 【边双连通】poj 3352 Road Construction
http://poj.org/problem?id=3352 [题意] 给定一个连通的无向图,求最少加多少条边使得这个图变成边双连通图 [AC] //#include<bits/stdc++.h ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- POJ 3352 Road Construction (边双连通分量)
题目链接 题意 :有一个景点要修路,但是有些景点只有一条路可达,若是修路的话则有些景点就到不了,所以要临时搭一些路,以保证无论哪条路在修都能让游客到达任何一个景点 思路 :把景点看成点,路看成边,看要 ...
- poj 3352 : Road Construction 【ebcc】
题目链接 题意:给出一个连通图,求最少加入多少条边可使图变成一个 边-双连通分量 模板题,熟悉一下边连通分量的定义.最后ans=(leaf+1)/2.leaf为原图中size为1的边-双连通分量 #i ...
- POJ 3352 Road Construction(边—双连通分量)
http://poj.org/problem?id=3352 题意: 给出一个图,求最少要加多少条边,能把该图变成边—双连通. 思路:双连通分量是没有桥的,dfs一遍,计算出每个结点的low值,如果相 ...
- POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
- Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)
http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何 ...
随机推荐
- 服务器监控之 ping 监控
在运维人员的日常工作中,对物理服务器的监控十分重要.物理机的 CPU.内存.磁盘使用率,网卡流量,磁盘 IO 等都需要进行监控.通过 ICMP 协议的 ping 监控,可以判断物理服务器运行是否正常或 ...
- 1319-n皇后问题
描述 在n×n 格的棋盘上放置彼此不受攻击的n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于在n×n格的棋盘上放置n个皇后,任何2 个皇后不放在同一 ...
- ***PHP 去除换行符
PHP在不同的系统中,换行是不同的 Linux:\n Windows:\r\n mac:\r 所以去除回车换行的方法: 1.使用php定义好的变量(比较好的方法,推荐) $str= str_repla ...
- php截取小时和分钟,在进行和其它时间段的比较
用php截取时间的小时和分钟,然后判断这个时间是不是在 8:00到11:30之间,用php应该怎么写? date_default_timezone_set("Asia/Shanghai&qu ...
- android 小米手机连接到电脑adb无法识别 解决方案
下载并安装小米手机助手 它会自动帮你安装驱动程序 安装成功后重启一下adb服务 应该就可以了
- push 栈顶sp=sp-2 可以把立着的栈,向左侧倒下,那么形态就和反汇编时,内存的形态是一样的。小偏移的字节在前, 大的偏移字节在后
push 栈顶sp=sp-2 可以把立着的栈,向左侧倒下,那么形态就和反汇编时,内存的形态是一样的.小偏移的字节在前, 大的偏移字节在后. 1 2 3 4 5 1 2 3 4 5
- [jobdu]把数组排成最小的数
这道题见过,就是把相加的结果作为比较来排序就行了.注意的是comp函数里面要用const引用.而且c++里的字符串直接操作(读入和相加)也很方便. #include <iostream> ...
- SPRING IN ACTION 第4版笔记-第四章ASPECT-ORIENTED SPRING-008-带参数的ADVICE
一. 假设有情形如:cd里有很多轨,当播放音乐时,要统计每个音轨的播放次数,这些统计操作不应放在播放方法里,因为统计不是播放音乐的主要职责,这种情况适合应用AOP. 二. 1. package sou ...
- Android开发UI之Fragment-Tabbed Activity的使用
使用ADT新建的时候,可以选择Tabbed Activity,选择新建一个工程. 新建的工程中,选择不同的Tab页显示不同的内容,主要是通过SectionsPagerAdapter类中的Fragmen ...
- Mysql常用show命令,show variables like xxx 详解,mysql运行时参数
MySQL中有很多的基本命令,show命令也是其中之一,在很多使用者中对show命令的使用还容易产生混淆,本文汇集了show命令的众多用法. 详细: http://dev.mysql.com/doc/ ...