Road Construction
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10141   Accepted: 5031

Description

It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.

The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.

Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.

So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.

Input

The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 ton. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.

Output

One line, consisting of an integer, which gives the minimum number of roads that we need to add.

Sample Input

Sample Input 1
10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10 Sample Input 2
3 3
1 2
2 3
1 3

Sample Output

Output for Sample Input 1
2 Output for Sample Input 2
0 题意:有n个旅游景点和r条路,任意两个景点之间都间接或直接的连在一起,但是有时候道路施工时我们无法走这条路,也就是说两个景点之间的道路断了,问现在最少添加多少条通道,使任意两个景点之间都不止一条通道 题解:显而易见此题是让求最少添加多少条路使图双连通,因为所有的点都是相连的,只是不是双连通,我们可以把原始数据看做是一个双连通图去掉了几条边所变成的图形,现在我们需要将这几条边加上去,一个双连通图其度数至少为2,所以当我们遇见度数为1的点时记录下来,最后度数为1的点的总数(sum+1)/2就是最后结果 注意:输入输出真坑,本来以为每组输入和输出前都要输出字符串的 结果一直wa
#include<stdio.h>
#include<string.h>
#include<stack>
#include<algorithm>
#define MAX 21000
#include<vector>
#define MAXM 2001000
#define INF 0x7ffffff
using namespace std;
int n,m,num,bridge;
int head[MAX],ans;
int in[MAX];
int low[MAX],dfn[MAX];
int instack[MAX],iscut[MAX];
int addbcc[MAX];
int dfsclock,bccno[MAX];
int bcccnt;
stack<int>s;
vector<int>newmap[MAX];
vector<int>bcc[MAX];
struct node
{
int beg,end,next;
}edge[MAXM];
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[ans].beg=u;
edge[ans].end=v;
edge[ans].next=head[u];
head[u]=ans++;
}
void getmap()
{
int a,b,i;
while(m--)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
}
void tarjan(int u,int fa)
{
int i,j,v;
s.push(u);
instack[u]=1;
low[u]=dfn[u]=++dfsclock;
int son=0;
int flag=1;
for(i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].end;
if(v==fa&&flag)//去重边
{
flag=0;
continue;
}
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u])//是桥
bridge++;
}
else
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
bcccnt++;
while(1)
{
v=s.top();
s.pop();
instack[v]=0;
bccno[v]=bcccnt;
if(v==u)
break;
}
}
}
void find(int l,int r)
{
int i;
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
memset(iscut,0,sizeof(iscut));
dfsclock=bcccnt=0;
for(i=l;i<=r;i++)
{
if(!dfn[i])
tarjan(i,-1);
}
}
void suodian()
{
int u,v,i;
memset(in,0,sizeof(in));
for(i=0;i<ans;i+=2)
{
u=bccno[edge[i].beg];
v=bccno[edge[i].end];
if(v!=u)
{
newmap[u].push_back(v);
newmap[v].push_back(u);
in[u]++;
in[v]++;
}
}
}
void solve()
{
int sum,i,j;
sum=0;
for(i=1;i<=bcccnt;i++)
{
if(in[i]==1)
sum++;
}
printf("%d\n",(sum+1)/2);
}
int main()
{
int i,j,k,t;
k=1;
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
getmap();
find(1,n);
suodian();
solve();
}
return 0;
}

  

poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】的更多相关文章

  1. POJ 1236--Network of Schools【scc缩点构图 &amp;&amp; 求scc入度为0的个数 &amp;&amp; 求最少加几条边使图变成强联通】

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13325   Accepted: 53 ...

  2. hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】

    Equivalent Sets Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Other ...

  3. 【边双连通】poj 3352 Road Construction

    http://poj.org/problem?id=3352 [题意] 给定一个连通的无向图,求最少加多少条边使得这个图变成边双连通图 [AC] //#include<bits/stdc++.h ...

  4. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  5. POJ 3352 Road Construction (边双连通分量)

    题目链接 题意 :有一个景点要修路,但是有些景点只有一条路可达,若是修路的话则有些景点就到不了,所以要临时搭一些路,以保证无论哪条路在修都能让游客到达任何一个景点 思路 :把景点看成点,路看成边,看要 ...

  6. poj 3352 : Road Construction 【ebcc】

    题目链接 题意:给出一个连通图,求最少加入多少条边可使图变成一个 边-双连通分量 模板题,熟悉一下边连通分量的定义.最后ans=(leaf+1)/2.leaf为原图中size为1的边-双连通分量 #i ...

  7. POJ 3352 Road Construction(边—双连通分量)

    http://poj.org/problem?id=3352 题意: 给出一个图,求最少要加多少条边,能把该图变成边—双连通. 思路:双连通分量是没有桥的,dfs一遍,计算出每个结点的low值,如果相 ...

  8. POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)

    Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...

  9. Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)

     http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何 ...

随机推荐

  1. iOS工程引入ios-charts-master

    前一段时间看到一个非常好的例子ios-charts-master,想在自己的工程中引用,但是一直没有成功,即使把整个工程原封不动的搬过来仍然,无济于事. 经过一次意外研究,终于成功了. 特记下集成过程 ...

  2. poj 2559 Largest Rectangle in a Histogram (单调栈)

    http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 6 ...

  3. Hadoop集群(第5期副刊)_JDK和SSH无密码配置

    1.Linux配置java环境变量 1.1 原文出处 地址:http://blog.csdn.net/jiedushi/article/details/6672894 1.2 解压安装jdk 在she ...

  4. C#中文转换成拼音英文

    #region 0.1 中文转到英文 + static string GetPinYing(string characters) /// <summary> /// 中文转到英文 /// ...

  5. Computer Vision的尴尬---by林达华

    Computer Vision的尴尬---by林达华 Computer Vision是AI的一个非常活跃的领域,每年大会小会不断,发表的文章数以千计(单是CVPR每年就录取300多,各种二流会议每年的 ...

  6. ZOJ 3705 Applications

    点我看题目 题意 : 真是一道又臭又长的模拟题啊,不过比赛的时候没看,赛完了补的. 给你N个候选人,让你从中选M个候选人,根据四个大规则来确定每个人的分数,然后选分数前M个人的输出. 1.在MOJ上做 ...

  7. Tomcat HTTP/1.1 Connector 参数整理

    HTTP/1.1 Connector 概述 Coyote HTTP/1.1 Connector元素是一个支持HTTP/1.1协议的Connector组件.它使Catalina除了能够执行servlet ...

  8. MySQL学习笔记之一

    MySQL装有一个名为mysql的命令行,在提示符下输入mysql将出现如下的简单提示: ➜ ~ mysql Welcome to the MySQL monitor. Commands end wi ...

  9. codeigniter 分页类练习

    controller page页: <?php class Blog extends CI_Controller{ public function __construct(){ parent:: ...

  10. ruby的命名约定

    1 局部变量和方法参数以小写字母开头 2 方法名字以小写字母开头 3 全局变量以$开头 4 实例变量以@开头 5 类变量以@@开头 6 常量以大写字母开头 7  类和模块名以大写字母开头