poj 3735 大数量反复操作问题(矩阵高速幂)
题意:一个一维数组,3种操作: a: 第i个数+1,b: 第i个数=0 ,c::交换某俩处的数。 由三种基本操作构成一组序列,反复该序列m次(m<10^9),问结果
属于一种综合操作反复型: 每次乘以一矩阵T,相当于做一次操作。关键是构造这个矩阵。
先构造最初矩阵A : 1*(n +1) ={1,0,0,0...} , 第一个一时为了操作第一行数的,
T的构造:初始是N+1 * N+1单位阵 这样恰好操作第i个数, +1,就在第0行的第 i个加1;交换就相应列交换,清零就相应列清0.
ans= A*(T^m); 注意用;long long
#include<iostream>
#include<cstring>
using namespace std;
struct juz
{
long long bat[105][105];
int x,y; //行 列
juz ()
{
memset(bat,0,sizeof(bat));
x=0;y=0;
}
};
juz mutp(juz a,juz b)
{
juz c;
c.x=a.x;c.y=b.y;
memset(c.bat,0,sizeof(c.bat));
for(int k=0;k<a.y;k++)
for(int i=0;i<a.x;i++)
if(a.bat[i][k])
{
for(int j=0;j<b.y;j++)
{
c.bat[i][j]+=(a.bat[i][k]*b.bat[k][j]);
}
}
return c;
}
juz quickf(juz a,int k)
{
juz c=a;
for(int i=0;i<a.x;i++)
for(int j=0;j<a.x;j++)
c.bat[i][j]=(i==j);
while(k>=1)
{
if(k%2)
c=mutp(c,a);
k=k/2; a=mutp(a,a);
}
return c;
}
int main()
{
int n,m,k;
while(cin>>n>>m>>k&&(n||m||k))
{
juz a,b,c;
a.x=1;a.y=n+1; b.x=n+1;b.y=n+1;
for(int i=0;i<=n;i++)
{
a.bat[0][i]=0;
b.bat[i][i]=1;
}
a.bat[0][0]=1;
char tmp;
int xx,yy;
for(int i=0;i<k;i++)
{
cin>>tmp;
if(tmp=='g')
{
cin>>xx;
b.bat[0][xx]++;
}
else if(tmp=='e')
{
cin>>xx;
for(int i=0;i<=n;i++)
b.bat[i][xx]=0;
}
else
{
cin>>xx>>yy;
for(int i=0;i<=n;i++)
{
int tx=b.bat[i][xx];
b.bat[i][xx]=b.bat[i][yy];
b.bat[i][yy]=tx;
}
}
}
c=quickf(b,m);
c=mutp(a,c);
for(int i=1;i<=n;i++)
if(i!=n)cout<<c.bat[0][i]<<" ";
else cout<<c.bat[0][i]<<endl;
}
return 0;
}
poj 3735 大数量反复操作问题(矩阵高速幂)的更多相关文章
- poj 2778 AC自己主动机 + 矩阵高速幂
// poj 2778 AC自己主动机 + 矩阵高速幂 // // 题目链接: // // http://poj.org/problem?id=2778 // // 解题思路: // // 建立AC自 ...
- POJ 3613 Cow Relays (floyd + 矩阵高速幂)
题目大意: 求刚好经过K条路的最短路 我们知道假设一个矩阵A[i][j] 表示表示 i-j 是否可达 那么 A*A=B B[i][j] 就表示 i-j 刚好走过两条路的方法数 那么同理 我们把 ...
- poj 3735 Training little cats(矩阵快速幂,模版更权威,这题数据很坑)
题目 矩阵快速幂,这里的模版就是计算A^n的,A为矩阵. 之前的矩阵快速幂貌似还是个更通用一些. 下面的题目解释来自 我只想做一个努力的人 @@@请注意 ,单位矩阵最初构造 行和列都要是(猫咪数+1) ...
- POJ 3735 Training little cats(矩阵快速幂)
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11787 Accepted: 2892 ...
- HDU2842-Chinese Rings(递推+矩阵高速幂)
pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...
- [POJ 3735] Training little cats (结构矩阵、矩阵高速功率)
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9613 Accepted: 2 ...
- poj 3233(矩阵高速幂)
题目链接:http://poj.org/problem?id=3233. 题意:给出一个公式求这个式子模m的解: 分析:本题就是给的矩阵,所以非常显然是矩阵高速幂,但有一点.本题k的值非常大.所以要用 ...
- [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3048 Accepted: 12 ...
- hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)
http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...
随机推荐
- swfupload上传文件问题
如果你的框架用到了struts2的话 可能会造成request冲突 那么解决的办法就是把该request排除出去 不让struts2拦截
- iOS图片的伪裁剪(改变图片的像素值)
0x00 原理 利用一张图片事先画好的图片(以下称为蒙板),盖在要被裁剪的的图片上,然后遍历蒙板上的像素点,修改被裁剪图片对应位置的像素的色值即可得到一些我们想要的不规则图片了(比如人脸) 0x01 ...
- 在easyui dialog的子页面内如何关闭弹窗
因项目需要在dialog中添加滚动条,所以就在div中加了iframe: <div id="applyRefundDialog" style="display:no ...
- magento后台 Fatal error: Call to a member function getId() on a non-object in错误
后台分类管理出现错误 Fatal error: Call to a member function getId() on a non-object in 在数据库中运行以下sql语句 INSERT I ...
- php学习之基础语法
这些语法都是在学习视频的过程中整理出来的,有些很简单的语法可能就没有整理了,只是记录了自己看来比较重要的语法内容. 1.变量使用 $ 声明 ,变量区分大小写 变量的类型: 4种标量类 ...
- asp.net 导入
开发项目过程中会遇到各种各样的项目需求,我现在遇到的问题是每个部门有不同的excel文件类型,他们每个部门每个文件类型上传成功之后都会在数据库中产生表,表的列名是你excel第一行数据,其他行作为表的 ...
- 让LINQ中的查询语法使用自定义的查询方法
使用LINQ时有两种查询语法:查询语法和方法语法 查询语法:一种类似 SQL 语法的查询方式 方法语法:通过扩展方法和Lambda表达式来创建查询 例如: List<, , , }; //查询语 ...
- [BZOJ 1692] [Usaco2007 Dec] 队列变换 【后缀数组 + 贪心】
---恢复内容开始--- 题目链接:BZOJ - 1692 题目分析 首先,有个比较简单的贪心思路:如果当前剩余字符串的两端字母不同,就选取小的字母,这样显然是正确的. 然而若两端字母相同,我们怎么选 ...
- JQuery 判断IPad、IPhone、Android是横屏还是竖屏(Window.Orientation实现)
在ipad.iphone网页开发中,我们很可能需要判断是横屏或者竖屏.下面就来介绍如何用 jQuery 判断iPad.iPhone.Android是横屏还是竖屏的方法. 代码如下: function ...
- Pair of Numbers
Codeforces Round #209 (Div. 2) D:http://codeforces.com/contest/359/problem/D 题意:给以一个n个数的序列,然后问你最大的区间 ...