zoj 3537 Cake(区间dp)
这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三角形的最小费用,那么dp[i][j] = min(dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]),其中,(j >= i+ 3,i+1<=k<=j-1,cost[i][k]为连一条i到k的线的费用)。
上一个图,来自博客http://blog.csdn.net/woshi250hua/article/details/7824433
代码如下:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define eps 1e-8
using namespace std;
typedef long long ll;
const int maxn = ;
const int inf = ( << );
int dp[maxn][maxn];
int cost[maxn][maxn];
struct point {
int x, y;
};
point p[maxn], convex[maxn];
bool cmp(const point &p1, const point &p2)
{
return ((p1.y == p2.y && p1.x < p2.x) || p1.y < p2.y);
}
int x_multi(const point &p1, const point &p2, const point &p3)
{
return ((p3.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p3.y - p1.y));
} int sgn(double x)
{
if (fabs(x) < eps)
return ;
return x > ? : -;
}
void convex_hull(point *p, point *convex, int n, int &len)//求凸包
{
sort(p, p + n, cmp);
int top = ;
convex[] = p[];
convex[] = p[];
for (int i = ; i < n; i++)
{
while (top > && x_multi(convex[top - ], convex[top], p[i]) <= )
top--;
convex[++top] = p[i];
}
int tmp = top;
for (int i = n - ; i >= ; i--)
{
while (top > tmp && x_multi(convex[top - ], convex[top], p[i]) <= )
top--;
convex[++top] = p[i];
}
len = top;
}
int get_cost(const point &p1, const point &p2, const int &mod)
{
return (abs(p1.x + p2.x) * abs(p1.y + p2.y)) % mod;
}
int main()
{
int n, mod;
while (~scanf("%d %d", &n, &mod))
{
for (int i = ; i < n; i++)
scanf("%d %d", &p[i].x, &p[i].y);
int len;
convex_hull(p, convex, n, len);
if (len < n)//如果不是凸包的话,
puts("I can't cut.");
else
{
memset(cost, , sizeof(cost));
for (int i = ; i < n; i++)
for (int j = i + ; j < n; j++)
cost[i][j] = cost[j][i] = get_cost(convex[i], convex[j], mod);//计算处各对角的费用
for (int i = ; i < n; i++)//初始化dp
{
for (int j = ; j < n; j++)
dp[i][j] = inf;
dp[i][i + ] = ;
}
for (int i = n - ; i >= ; i--)//必须逆序,因为dp[i][j] 是由dp[i][k], dp[k][j]推来的,而k是大于i的,
for (int j = i + ; j < n; j++)//同理顺序,因为k小于j
for (int k = i + ; k <= j - ; k++)
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + cost[i][k] + cost[k][j]);
printf("%d\n", dp[][n - ]);
}
}
return ;
}
zoj 3537 Cake(区间dp)的更多相关文章
- zoj 3537 Cake 区间DP (好题)
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...
- 区间DP Zoj 3537 Cake 区间DP 最优三角形剖分
下面是别人的解题报告的链接,讲解很详细,要注意细节的处理...以及为什么可以这样做 http://blog.csdn.net/woshi250hua/article/details/7824433 我 ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- zoj 3537 Cake (凸包确定+间隔dp)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-sha ...
- ZOJ 3537 Cake
区间DP. 首先求凸包判断是否为凸多边形. 如果是凸多边形:假设现在要切割连续的一段点,最外面两个一定是要切一刀的,内部怎么切达到最优解就是求子区间最优解,因此可以区间DP. #include< ...
- ZOJ 3469Food Delivery(区间DP)
Food Delivery Time Limit: 2 Seconds Memory Limit: 65536 KB When we are focusing on solving prob ...
- ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...
随机推荐
- nginx 一般配置实例 静态页面
# 使用的用户和组 user www www; # 指定工作衍生进程数(一般等于CPU的总核数或总核数的两倍,例如两个四核CPU,则总核数为8) worker_processes 8; # 指定错误日 ...
- 百度的一个Ajax跨域方法 JavaScript是没有域的限制
baidu的通行证处理都是在二级域名passport.baidu.com中处理的,但是baidu很多地方登录都好像是用ajax处理的,他是怎么做的呢?研究了一下,发现一个小技巧. 在http://zh ...
- 隐藏和显示 ng-show ng-hide
<div ng-controller='DeathraymenueController'> <button ng-click="toggleMenue()" ...
- uboot总结:uboot配置和启动过程1(主Makefile分析)
说明:文件位置:在uboot的目录下,文件名为:Makefile 从文件的头部开始分析 1.24-29行,配置uboot的版本信息. VERSION = PATCHLEVEL = SUBLEVEL = ...
- glide简介
golang包管理工具glide简介 golang包管理工具glide简介 前言 golang是一个十分有趣,简洁而有力的开发语言,用来开发并发/并行程序是一件很愉快的事情.在这里我感受到了其中一 ...
- Google测试精华文章(1) - 测试行为,而非实现
Your trusty Calculator class is one of your most popular open source projects, with many happy users ...
- An Attempt to Understand Boosting Algorithm(s)
An Attempt to Understand Boosting Algorithm(s) WELCOME! Here you will find daily news and tutorials ...
- ZABBIX作集中式NGINX性能监控的注意要点
今天测试好了.但有几个要点要注意. 一是出了问题看日志. 二是主动测试脚本. 三是注意LLD自动发现的ZABBIX类型(TRAPPER,捕捉器类型) 四是有主机上有问题时可以看到(UNSUPPORT) ...
- FindControl什么时候才会使用ObjectFromHWnd函数呢?——VCL很难调试,加一个日志函数,记录时间
IsDelphiHandleFindVCLWindowfunction IsVCLControl(Handle: HWND): Boolean;function FindControl(Handle: ...
- C# 精准获取代码运行时间
纯粹转载,转载请注明参考链接及作者! 参考链接:http://www.cnblogs.com/ret00100/archive/2010/08/06/1793680.html,作者:博客园 大佬辉 ...