Description

Input

第一行两个正整数\(N,S\),分别表示小Y 能预知的天数以及初始时拥有的钱数。 接下来\(N\)行,第\(K\)行三个实数\(A_{K},B_{K},Rate_{K}\),意义如题目中所述。

Output

只有一个实数\(MaxProfit\),表示第\(N\)天的操作结束时能够获得的最大的金钱数目。答案保留$3¥位小数。

Sample Input

3 100

1 1 1

1 2 2

2 2 3

Sample Output

225.000

HINT



测试数据设计使得精度误差不会超过\(10^{-7}\)。

对于40%的测试数据,满足\(N \le 10\);

对于60%的测试数据,满足\(N \le 1000\);

对于100%的测试数据,满足\(N \le 100000\)。

这是一道斜率优化dp的好题。他并不满足单调性,我们只能动态维护凸包。平衡树动态维护凸包并不好码,我们可以用编程复杂度较低的cdq分治。

首先确定一点:最优解一定是贪心地全部买入或卖出所得到的。

\(f_{i}\)表示第\(i\)天所能得到的最多钱数,转移:$$f_{i}=max(f_{i-1},A_{i} \times rate_{j} \frac{f_{j}}{1+rate_{j}}+B_{i} \times \frac{f_{j}}{1+rate_{j}})$$

但是对于这个式子dp是\(O(n^{2})\)的,我们可以令$$X_{i}= rate_{i} \frac{f_{i}}{1+rate_{i}},Y_{i}=\frac{f_{i}}{1+rate_{i}}$$

则dp方程就可以化简为$$f_{i}=max(f_{i-1},A_{j} \times X_{j}+B_{j} \times Y_{j})$$

看出来没,这是一个很明显的斜率优化dp的式子,但是\(X_{i}\)和\(Y_{i}\)都不单调,怎么办。

平衡树动态维护凸包,并不会。于是cdq分治的优势就体现出来了。

cdq分治:对于\(l \thicksim r\)一段,我们可以用已经算出来的\(l \thicksim mid\)一段区更新\(mid+1 \thicksim r\)一段。由于\(l \thicksim mid\)一段\(f\)已经确定,所以我们可以对之进行排序,求凸包之类的,借之更新\(mid+1 \thicksim r\)。

我们只需对于确定\(l \thicksim mid\)一段求凸包,然后用每个\(mid+1 \thicksim r\)里的元素进行二分更新\(f\)即可。时间复杂度\(O(nlog^{2}n)\)。

#include<cmath>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std; #define maxn 100010
int n; double f[maxn],rate[maxn],ak[maxn],bk[maxn];
struct NODE
{
double x,y;
friend inline bool operator <(const NODE &a,const NODE &b) { return a.x < b.x; }
friend inline double operator /(const NODE &a,const NODE &b) { return a.x*b.y-a.y*b.x; }
friend inline NODE operator -(const NODE &a,const NODE &b) { return (NODE){a.x-b.x,a.y-b.y}; }
inline double alpha() { return atan2(y,x); }
}ask[maxn],ham[maxn];
double bac[maxn]; inline int find(double key,int l,int r)
{
int mid;
while (l <= r)
{
mid = (l + r) >> 1;
if (bac[mid] > key) l = mid+1;
else r = mid - 1;
}
return l;
} inline void work(int l,int r)
{
if (l == r)
{
f[l] = max(f[l-1],f[l]);
ask[l].x = f[l]/(ak[l]*rate[l]+bk[l]);
ask[l].y = ask[l].x*rate[l];
return;
}
int mid = (l + r) >> 1;
work(l,mid);
sort(ask+l,ask+mid+1);
int m = 0;
for (int i = mid;i >= l;--i)
{
while (m > 1&&(ham[m]-ham[m-1])/(ask[i]-ham[m-1]) <= 0) --m;
ham[++m] = ask[i];
}
reverse(ham+1,ham+m+1);
for (int i = 1;i < m;++i) bac[i] = (ham[i+1]-ham[i]).alpha();
for (int i = mid+1;i <= r;++i)
{
double k = (NODE) {ak[i],-bk[i]}.alpha();
int pos = find(k,1,m-1);
f[i] = max(f[i],bk[i]*ham[pos].x+ak[i]*ham[pos].y);
}
work(mid+1,r);
} int main()
{
freopen("1492.in","r",stdin);
freopen("1492.out","w",stdout);
scanf("%d%lf",&n,&f[0]);
for (int i = 1;i <= n;++i)
scanf("%lf %lf %lf",ak+i,bk+i,rate+i);
work(1,n);
printf("%.3lf",f[n]);
fclose(stdin); fclose(stdout);
return 0;
}

BZOJ 1492 货币兑换的更多相关文章

  1. BZOJ 1492 货币兑换Cash

    http://www.lydsy.com/JudgeOnline/problem.php?id=1492 思路: 问题转变为维护一个凸包,每次转移都找凸包上的点,并更新凸壳 可以用splay维护,或者 ...

  2. BZOJ 1492 货币兑换 Cash CDQ分治

    这题n2算法就是一个维护上凸包的过程. 也可以用CDQ分治做. 我的CDQ分治做法和网上的不太一样,用左边的点建立一个凸包,右边的点在上面二分. 好处是思路清晰,避免了凸包的插入删除,坏处是多了一个l ...

  3. BZOJ 1492 货币兑换 cdq分治或平衡树维护凸包

    题意:链接 方法:cdq分治或平衡树维护凸包 解析: 这道题我拒绝写平衡树的题解,我仅仅想说splay不要写挂,insert边界条件不要忘.del点的时候不要脑抽d错.有想写平衡树的去看140142或 ...

  4. BZOJ 1492: [NOI2007]货币兑换Cash( dp + 平衡树 )

    dp(i) = max(dp(i-1), x[j]*a[i]+y[j]*b[i]), 0<j<i. x, y表示某天拥有的最多钱去买金券, 金券a和金券b的数量. 然后就很明显了...平衡 ...

  5. NOI 2007 货币兑换Cash (bzoj 1492) - 斜率优化 - 动态规划 - CDQ分治

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

  6. bzoj 1492 [NOI2007]货币兑换Cash(斜率dp+cdq分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1492   [题意] 有AB两种货币,每天可以可以付IPi元,买到A券和B券,且A:B= ...

  7. ●BZOJ 1492 [NOI2007]货币兑换Cash

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1492 题解: 斜率优化DP,CDQ分治 定义$DP[i]$为第i天结束后的最大收益. 由于题 ...

  8. BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)

    BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...

  9. 【BZOJ 1492】【NOI 2007】货币兑换Cash

    这是道CDQ分治的例题: $O(n^2)$的DP: f [1]←S* Rate[1] / (A[1] * Rate[1] + B[1]) Ans←SFor i ← 2 to n For j ←1 to ...

随机推荐

  1. (转)PHP连接数据库之PHP连接MYSQL数据库代码

    PHP连接数据库之PHP连接MYSQL数据库代码 < ?php $mysql_server_name='localhost'; //改成自己的mysql数据库服务器 $mysql_usernam ...

  2. smarty、thinkphp中的html加载其他的html文件的方式

    1.smarty 在模板文件中,使用定界符 {include file="header.html"}  不可以省略.html 2.thinkphp的html文件中 <incl ...

  3. 未能正确加载“visual C++ package”包

    早上打开360要卸载软件,跳出说系统修复,习惯性的点击修复,结果修复后发现打开vs2012提示“未能正确加载“visual C++ package”包……..”, 重启也一样,google了下,是因为 ...

  4. docker 镜像中包含数据库环境和运行环境

    需求: 一个镜像中要包含数据库环境和运行环境 Apache 环境 + mariadb 已经在拉取了Apache的运行环境 - 拉取代码 git https://github.com/timhaak/d ...

  5. gitlab一键安装

    参考 https://about.gitlab.com/downloads/

  6. 趣谈iOS运行时的方法调用原理

    一个成熟的计算机语言必然有丰富的体系,复杂的容错机制,处理逻辑以及判断逻辑.但这些复杂的逻辑都是围绕一个主线丰富和展开的,所以在学习计算机语言的时候,先掌握核心,然后了解其原理,明白程序语言设计的实质 ...

  7. 高效 css 整理

    避免通用规则 请确保规则不以通用类型作为结束! 不要用标签名或 classes 来限制 ID 规则 如果规则的关键选择器为 ID 选择器,则没有必要为规则增加标签名.因为 ID 是唯一的,增加标签只会 ...

  8. 第四篇:python 高级之面向对象初级

    python 高级之面向对象初级   python 高级之面向对象初级 本节内容 类的创建 类的构造方法 面向对象之封装 面向对象之继承 面向对象之多态 面向对象之成员 property 1.类的创建 ...

  9. python 学习笔记(一)

    在Windows上安装Python 首先,从Python的官方网站www.python.org下载最新的2.7.9版本,地址是这个: http://www.python.org/ftp/python/ ...

  10. 解决dispaly:inline-block 遗留间隙的问题

    今天做一个项目 .本来我打算是作成表格的 ,后来觉得太费事直接搞成一个div 里面直接放四个a ,然后我将a 设置成inline-block.刚开始还没发现任何间隙问题,(对了说到这里 博主给新手介绍 ...