首先有向图的题目不难想到先tarjan缩点

一个强连通分量中的点的连通数显然是相等;

据说这样直接dfs就可以过了,但显然不够精益求精

万一给定的是一个完全的DAG图怎么办,dfs铁定超时;

首先想,dfs进行了很多不必要的操作,比如说i--->j

那么j的连通数一定也是i的连通数,但我们做dfs是需要做两遍的,降低了效率

那么为了提高效率,我们希望支持一个这样的操作

记录下每个点所能到的点,并且能快速的合并;

不由的想到位运算,但是最多只有30位,而实际有2000个点怎么办?

那我们就维护最多70个数,每个数表示到达情况

dp[k,i]为一个表示连通状况的数

第i个数的二进制上第j个位置(位置从右往左,0~30) 代表点k能否到达点(i-1)*30+j+1 (1代表可到达,0代表不可)

然后从出度为0的点不断dp即可;

具体见程序,表达不清,时间复杂度大约是O(nm/30) 还是非常优秀的

 type link=^node;
     node=record
       po:longint;
       next:link;
     end; var edge,way:array[..] of link;
    v,f:array[..] of boolean;
    be,count,dfn,low,st:array[..] of longint;
    dp:array[..,..] of longint;
    ans,s,state,h,t,l,x,y,i,j,n,m:longint;
    ch:ansistring;
    p:link; function min(a,b:longint):longint;
  begin
    if a>b then exit(b) else exit(a);
  end; procedure add(y:longint;var q:link);
  var p:link;
  begin
    new(p);
    p^.po:=y;
    p^.next:=q;
    q:=p;
  end; procedure tarjan(x:longint);
  var y:longint;
      p:link;
  begin
    p:=edge[x];
    v[x]:=true;
    f[x]:=true;
    inc(h);
    dfn[x]:=h;
    low[x]:=h;
    inc(t);
    st[t]:=x;
    while p<>nil do
    begin
      y:=p^.po;
      if not v[y] then
      begin
        tarjan(y);
        low[x]:=min(low[x],low[y]);
      end
      else if f[y] then
        low[x]:=min(low[x],low[y]);
      p:=p^.next;
    end;
    if low[x]=dfn[x] then
    begin
      inc(s);
      while st[t+]<>x do
      begin
        y:=st[t];
        f[y]:=false;
        be[y]:=s;
        inc(count[s]);
        dec(t);
      end;
    end;
  end; procedure merge(x,y:longint);   //合并点的连通情况
  var i,j:longint;
  begin
    for i:= to state do
      dp[x,i]:=dp[x,i] or dp[y,i];
  end; function get(x:longint):longint;  
  var i,j,r:longint;
  begin
    get:=;
    for i:= to state do  //穷举每个数
      for j:= to do   //穷举二进制的每一位
      begin
        r:= shl j;    //位运算的技巧
        if r>dp[x,i] then break;  
        if (dp[x,i] and r)<> then
          get:=get+count[(i-)*+j+]; 
      end;
  end; begin
  readln(n);
  for i:= to n do
  begin
    readln(ch);
    for j:= to n do
    begin
      x:=ord(ch[j])-;
      if x<> then add(j,edge[i]);
    end;
  end;
  for i:= to n do
    if not v[i] then
    begin
      h:=;
      t:=;
      tarjan(i);
    end;   fillchar(dfn,sizeof(dfn),);
  for i:= to n do
  begin
    p:=edge[i];
    while p<>nil do
    begin
      y:=p^.po;
      if be[y]<>be[i] then
      begin
        inc(dfn[be[i]]);      //计算出度
        add(be[i],way[be[y]]);   //缩点后记录点be[y]被那些点指向
      end;
      p:=p^.next;
    end;
  end;
  fillchar(v,sizeof(v),false);
  t:=;
  for i:= to s do
    edge[i]:=nil;
  for i:= to s do
  begin
    p:=way[i];
    while p<>nil do
    begin
      x:=p^.po;
      add(i,edge[x]);   //记录点i指向那些点
      p:=p^.next;
    end;
    x:=(i-) div +;
    y:=(i-) mod ;
    dp[i,x]:= shl y;   //每个点对自己都是可达的
  end;
  for i:= to s do
    if dfn[i]= then   //从出度为0的点开始dp
    begin
      inc(t);
      st[t]:=i;
    end;   state:=s div +;
  l:=;
  while l<=t do
  begin
    inc(l);
    x:=st[l];
    p:=edge[x];
    while p<>nil do
    begin
      y:=p^.po;
      merge(x,y);   //每个x指向的点的连通数一定也是x的连通数,合并
      p:=p^.next;
    end;
    ans:=ans+count[x]*get(x);  //计算连通数
    p:=way[x];
    while p<>nil do     //类似拓扑排序,删除点x,寻找新的出度为0的点
    begin
      y:=p^.po;
      dec(dfn[y]);
      if dfn[y]= then
      begin
        inc(t);
        st[t]:=y;
      end;
      p:=p^.next;
    end;
  end;
  writeln(ans);
end.

bzoj2208的更多相关文章

  1. 【BZOJ2208】[JSOI2010]连通数(Tarjan)

    [BZOJ2208][JSOI2010]连通数(Tarjan) 题面 BZOJ 洛谷 题解 先吐槽辣鸡洛谷数据,我写了个\(O(nm)\)的都过了. #include<iostream> ...

  2. 【BZOJ2208】[Jsoi2010]连通数 DFS

    [BZOJ2208][Jsoi2010]连通数 Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示 ...

  3. [bzoj2208][Jsoi2010]连通数_bitset_传递闭包floyd

    连通数 bzoj-2208 Jsoi-2010 题目大意:给定一个n个节点的有向图,问每个节点可以到达的点的个数和. 注释:$1\le n\le 2000$. 想法:网上有好多tarjan+拓扑序dp ...

  4. BZOJ2208: [Jsoi2010]连通数

    tarjan缩点后拓扑排序,每一个点用一个bitset记录哪些点能到达它. PS:数据太水,暴力能过. #include<bits/stdc++.h> using namespace st ...

  5. bzoj2208:[Jsoi2010]连通数

    http://blog.csdn.net/u013598409/article/details/47037499 里面似乎有生成数据的... //我本来的想法是tarjan缩点之后然后将图遍历一遍就可 ...

  6. bzoj2208 [Jsoi2010]连通数(scc+bitset)

    2208: [Jsoi2010]连通数 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1879  Solved: 778[Submit][Status ...

  7. 【BZOJ2208】【JSOI2010】连通数 传递闭包

    题目描述 定义一个图的连通度为图中可达顶点对的数目.给你一个\(n\)个点的有向图,问你这个图的连通度. \(n\leq 2000,m\leq n^2\) 题解 一个很简单的做法就是传递闭包:像flo ...

  8. bzoj2208 连通数(bitset优化传递闭包)

    题目链接 思路 floyd求一下传递闭包,然后统计每个点可以到达的点数. 会tle,用bitset优化一下.将floyd的最后一层枚举变成bitset. 代码 /* * @Author: wxyww ...

  9. BZOJ2208: [Jsoi2010]连通数(tarjan bitset floyd)

    题意 题目链接 Sol 数据水的一批,\(O(n^3)\)暴力可过 实际上只要bitset优化一下floyd复杂度就是对的了(\(O(\frac{n^3}{32})\)) 还可以缩点之后bitset维 ...

随机推荐

  1. Pulltorefresh使用中碰到的问题

    第一 在使用XScrollView布局是,无法在该布局.xml文件,放置内容布局控件,假如放置了会报错, <com.markmao.pulltorefresh.widget.XScrollVie ...

  2. 此博客不更新文章,请到www.xiaoxiangyucuo.com看最新文章

    请到www.xiaoxiangyucuo.com看更多资料,包括Linux,JavaScript,Python,MySQL,PHP,HTML,Photoshop,以及各类软件下载. 希望大家支持,提出 ...

  3. 链表C++模板实现

    #include <iostream.h> #include <stdlib.h> //结点模板类 template <typename t1, typename t2& ...

  4. read/write数据读写传输方式(转)

    前言 笔者本打算撰写一篇讲解标准I/O(缓存I/O)的博文,但是发现已经有网友做过同样的工作,并且工作质量上乘,特转载于此. 原文地址http://lenky.info/archives/2012/0 ...

  5. apply()与call()的区别

    一直都没太明白apply()与call()的具体使用原理,今日闲来无事,决定好好研究一番. JavaScript中的每一个Function对象都有一个apply()方法和一个call()方法,它们的语 ...

  6. 让hyper-v虚拟机中类ubuntu系统可以全屏

    很久之前一直都没有方法让linux虚拟机支持hyper-v的全屏,只能以1024x768或者800x600等方形屏幕 如果是windows7以前的电脑,可以用mstsc远程桌面修改分辨率,window ...

  7. MongoDB入门三步曲2--基本操作(续)--聚合、索引、游标及mapReduce

    mongodb 基本操作(续)--聚合.索引.游标及mapReduce 目录 聚合操作 MapReduce 游标 索引 聚合操作 像大多关系数据库一样,Mongodb也提供了聚合操作,这里仅列取常见到 ...

  8. MIT 2012分布式课程基础源码解析一-源码概述

    课程主页 课程介绍:本课程会在给出的源码的基础上要求完成8个lab Lab overviewLab 1 - Lock ServerLab 2 - Basic File ServerLab 3 - MK ...

  9. 大型B/S系统技术总结(不断更新)

    看了<淘宝技术这十年>和<大型网站系统与Java中间件实践>这些书,对大型B/S系统的构建越来越感兴趣,于是尝试收集和总结一些常用的技术手段.不过大型网站的架构是根据业务需求不 ...

  10. Control character in cookie value, consider BASE64 encoding your value , java操作cookie遇到中文会报错的解决方案

    项目当中用到cookie保存中文,但是会报如下错误: Control character in cookie value, consider BASE64 encoding your value 大概 ...