SecondarySort 原理
定义IntPair 以及 IntPair(first,second)的compareto,先比較first的大小,再比較second的大小
定义FirstPartitioner是为了让partition的时候依照IntPair的first来做为选择reduce的根据
定义FirstGroupingComparator是为了:《Pro Hadoop》,里面有一部分内容详解了这个问题,看后最终明确了,和大家分享一下。reduce方法每次是读一条记录,读到对应的key,可是处理value集合时,处理完当前记录的values后,还会推断下一条记录是不是和当前的key是不是同一个组,假设是的话,会继续读取这些记录的值,而这个记录也会被觉得已经处理了,直到记录不是当前组,这次reduce调用才结束,这样一次reduce调用就会处理掉一个组中的全部记录,而不不过一条了。
以下是从hadoop里取出的源码,能够再理解下:
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/ package org.apache.hadoop.examples; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.GenericOptionsParser; /**
* This is an example Hadoop Map/Reduce application.
* It reads the text input files that must contain two integers per a line.
* The output is sorted by the first and second number and grouped on the
* first number.
*
* To run: bin/hadoop jar build/hadoop-examples.jar secondarysort
* <i>in-dir</i> <i>out-dir</i>
*/
public class SecondarySort { /**
* Define a pair of integers that are writable.
* They are serialized in a byte comparable format.
*/
public static class IntPair
implements WritableComparable<IntPair> {
private int first = 0;
private int second = 0; /**
* Set the left and right values.
*/
public void set(int left, int right) {
first = left;
second = right;
}
public IntPair(){}
public IntPair(int left,int right){
set(left, right);
}
public int getFirst() {
return first;
}
public int getSecond() {
return second;
}
/**
* Read the two integers.
* Encoded as: MIN_VALUE -> 0, 0 -> -MIN_VALUE, MAX_VALUE-> -1
*/
@Override
public void readFields(DataInput in) throws IOException {
first = in.readInt() + Integer.MIN_VALUE;
second = in.readInt() + Integer.MIN_VALUE;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeInt(first - Integer.MIN_VALUE);
out.writeInt(second - Integer.MIN_VALUE);
}
@Override
public int hashCode() {
return first * 157 + second;
}
@Override
public boolean equals(Object right) {
if (right instanceof IntPair) {
IntPair r = (IntPair) right;
return r.first == first && r.second == second;
} else {
return false;
}
}
/** A Comparator that compares serialized IntPair. */
public static class Comparator extends WritableComparator {
public Comparator() {
super(IntPair.class);
} public int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2) {
return compareBytes(b1, s1, l1, b2, s2, l2);
}
} static { // register this comparator
WritableComparator.define(IntPair.class, new Comparator());
} @Override
public int compareTo(IntPair o) {
if (first != o.first) {
return first < o.first ? -1 : 1;
} else if (second != o.second) {
return second < o.second ? -1 : 1;
} else {
return 0;
}
}
} /**
* Partition based on the first part of the pair.
*/
public static class FirstPartitioner extends Partitioner<IntPair,IntWritable>{
@Override
public int getPartition(IntPair key, IntWritable value,
int numPartitions) {
return Math.abs(key.getFirst() * 127) % numPartitions;
}
} /**
* Compare only the first part of the pair, so that reduce is called once
* for each value of the first part.
*/
public static class FirstGroupingComparator
implements RawComparator<IntPair> {
@Override
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
return WritableComparator.compareBytes(b1, s1, Integer.SIZE/8,
b2, s2, Integer.SIZE/8);
} @Override
public int compare(IntPair o1, IntPair o2) {
int l = o1.getFirst();
int r = o2.getFirst();
return l == r ? 0 : (l < r ? -1 : 1);
}
} /**
* Read two integers from each line and generate a key, value pair
* as ((left, right), right).
*/
public static class MapClass
extends Mapper<LongWritable, Text, IntPair, IntWritable> { private final IntPair key = new IntPair();
private final IntWritable value = new IntWritable(); @Override
public void map(LongWritable inKey, Text inValue,
Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(inValue.toString());
int left = 0;
int right = 0;
if (itr.hasMoreTokens()) {
left = Integer.parseInt(itr.nextToken());
if (itr.hasMoreTokens()) {
right = Integer.parseInt(itr.nextToken());
}
key.set(left, right);
value.set(right);
context.write(key, value);
}
}
} /**
* A reducer class that just emits the sum of the input values.
*/
public static class Reduce
extends Reducer<IntPair, IntWritable, Text, IntWritable> {
private static final Text SEPARATOR =
new Text("------------------------------------------------");
private final Text first = new Text(); @Override
public void reduce(IntPair key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
context.write(SEPARATOR, null);
first.set(Integer.toString(key.getFirst()));
for(IntWritable value: values) {
context.write(first, value);
}
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: secondarysrot <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "secondary sort");
job.setJarByClass(SecondarySort.class);
job.setMapperClass(MapClass.class);
job.setReducerClass(Reduce.class); // group and partition by the first int in the pair
job.setPartitionerClass(FirstPartitioner.class);
job.setGroupingComparatorClass(FirstGroupingComparator.class); // the map output is IntPair, IntWritable
job.setMapOutputKeyClass(IntPair.class);
job.setMapOutputValueClass(IntWritable.class); // the reduce output is Text, IntWritable
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }
SecondarySort 原理的更多相关文章
- hadoop自带例子SecondarySort源码分析MapReduce原理
这里分析MapReduce原理并没用WordCount,目前没用过hadoop也没接触过大数据,感觉,只是感觉,在项目中,如果真的用到了MapReduce那待排序的肯定会更加实用. 先贴上源码 pac ...
- Hadoop MapReduce 二次排序原理及其应用
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGrou ...
- 奇异值分解(SVD)原理与在降维中的应用
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...
- node.js学习(三)简单的node程序&&模块简单使用&&commonJS规范&&深入理解模块原理
一.一个简单的node程序 1.新建一个txt文件 2.修改后缀 修改之后会弹出这个,点击"是" 3.运行test.js 源文件 使用node.js运行之后的. 如果该路径下没有该 ...
- 线性判别分析LDA原理总结
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结. ...
- [原] KVM 虚拟化原理探究(1)— overview
KVM 虚拟化原理探究- overview 标签(空格分隔): KVM 写在前面的话 本文不介绍kvm和qemu的基本安装操作,希望读者具有一定的KVM实践经验.同时希望借此系列博客,能够对KVM底层 ...
- H5单页面手势滑屏切换原理
H5单页面手势滑屏切换是采用HTML5 触摸事件(Touch) 和 CSS3动画(Transform,Transition)来实现的,效果图如下所示,本文简单说一下其实现原理和主要思路. 1.实现原理 ...
- .NET Core中间件的注册和管道的构建(1)---- 注册和构建原理
.NET Core中间件的注册和管道的构建(1)---- 注册和构建原理 0x00 问题的产生 管道是.NET Core中非常关键的一个概念,很多重要的组件都以中间件的形式存在,包括权限管理.会话管理 ...
- python自动化测试(2)-自动化基本技术原理
python自动化测试(2) 自动化基本技术原理 1 概述 在之前的文章里面提到过:做自动化的首要本领就是要会 透过现象看本质 ,落实到实际的IT工作中就是 透过界面看数据. 掌握上面的这样的本领 ...
随机推荐
- codeblocks调试(转载)
单步调试 1)设置断点 在需要设置断点处,右击左边行号,Add breakpoint,则出现一个红色的点(可以同时设置多个,前提是不能在debug的运行模式下). 2)调试运行 Debug-> ...
- 注册表和ODBC
注册表使用的是树型体系结构,树中的每个结点称键.每个键也可以包含其他的键或子键.它允许进一步的分支,也即为值,它用来存储有效的数据.在注册表中,注册表用键来组织数据,一个键中的值用它们的名来 ...
- Python 类型
文章出处:http://www.cnblogs.com/winstic/,请保留此连接 python是动态类型语言,不需要预先声明变量的类型,变量类型和值在赋值的那一刻被初始化 python使 ...
- sublime3快捷键汇总
!+tab生成html结构文档选择类 Ctrl+D 选中光标所占的文本,继续操作则会选中下一个相同的文本.Alt+F3 选中文本按下快捷键,即可一次性选择全部的相同文本进行同时编辑.举个栗子: 快速选 ...
- Android Audio 分析
一.架构 二.MediaServer初始化 所有的media服务都在进程mediaserver里.其代码在framework/base/media/mediaserver/main_mediaserv ...
- C++结构简介
结构是一种比数组更灵活的数据格式,因为同一个结构可以储存多种类型的数据,这使得能够将篮球运动员的信息放在一个结构中,从而将数据的表示的合并到一起. 结构也是C++堡垒OOP(类)的基石.结构是用户定义 ...
- Hibernate 使用注解后没发现建表
可能的原因: ①该注解类中的注解出错:例如是否因为属性名与数据库关键字冲突 ②是否添加包扫描配置: <property name="packagesToScan" value ...
- 初次踏上GUI编程之路(有点意思,详细介绍了菜鸟的学习之路)
初次踏上GUI编程之路 —— 我的Qt学习方法及对Qt认识的不断转变 -> 开始接触GUI与开始接触Qt: 话说,我第一次看见“Qt”这一个名词,好像是在CSDN网站的主页上吧,因为CSDN好像 ...
- 如何测试 Android 中的定时事件
测试定时事件不太容易,比如要测试 AlarmManager 中定时明天4点的一个事件,你总不能等到明天4点再看看吧. Roman Nurik 提供了两个用来测试定时事件的命令:adb shell du ...
- 悟透Javascript undefined,null,"",0这四个值转换为逻辑值时就是false &this关键字
话题一:undefined,null,"",0这四个值转换为逻辑值时就是false 也就是在if判断时会把上面的五个作为false来判断.但是它们的类型确是不尽相同的,如下所示. ...