大数据处理框架之Strom:redis storm 整合
storm 引入redis ,主要是使用redis缓存库暂存storm的计算结果,然后redis供其他应用调用取出数据。
新建maven工程
pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>storm07</groupId>
<artifactId>storm07</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging> <name>storm07</name>
<url>http://maven.apache.org</url>
<repositories>
<!-- Repository where we can found the storm dependencies -->
<repository>
<id>clojars.org</id>
<url>http://clojars.org/repo</url>
</repository>
</repositories>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>0.9.2-incubating</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.1.1</version>
</dependency> <dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.1.1</version>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
<version>2.0-beta9</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-1.2-api</artifactId>
<version>2.0-beta9</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>log4j-over-slf4j</artifactId>
<version>1.7.10</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.10</version>
</dependency>
</dependencies>
<build>
<finalName>storm07</finalName>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<version>2.4</version>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.1</version>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
<!-- 单元测试 -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>
<skip>true</skip>
<includes>
<include>**/*Test*.java</include>
</includes>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactId>
<version>2.1.2</version>
<executions>
<!-- 绑定到特定的生命周期之后,运行maven-source-pluin 运行目标为jar-no-fork -->
<execution>
<phase>package</phase>
<goals>
<goal>jar-no-fork</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Topology
package bhz.storm.redis.example; import java.util.ArrayList;
import java.util.List; import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.topology.TopologyBuilder; public class Topology {
public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException { TopologyBuilder builder = new TopologyBuilder(); List<String> zks = new ArrayList<String>();
zks.add("192.168.1.114"); List<String> cFs = new ArrayList<String>();
cFs.add("personal");
cFs.add("company"); // set the spout class
builder.setSpout("spout", new SampleSpout(), 2);
// set the bolt class
builder.setBolt("bolt", new StormRedisBolt("192.168.1.114",6379), 2).shuffleGrouping("spout"); Config conf = new Config();
conf.setDebug(true);
// create an instance of LocalCluster class for
// executing topology in local mode.
LocalCluster cluster = new LocalCluster(); // StormRedisTopology is the name of submitted topology.
cluster.submitTopology("StormRedisTopology", conf, builder.createTopology());
try {
Thread.sleep(10000);
} catch (Exception exception) {
System.out.println("Thread interrupted exception : " + exception);
}
// kill the StormRedisTopology
cluster.killTopology("StormRedisTopology");
// shutdown the storm test cluster
cluster.shutdown();
}
}
spout
package bhz.storm.redis.example; import java.util.HashMap;
import java.util.Map;
import java.util.Random; import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values; public class SampleSpout extends BaseRichSpout {
private static final long serialVersionUID = 1L;
private SpoutOutputCollector spoutOutputCollector; private static final Map<Integer, String> FIRSTNAMEMAP = new HashMap<Integer, String>();
static {
FIRSTNAMEMAP.put(0, "john");
FIRSTNAMEMAP.put(1, "nick");
FIRSTNAMEMAP.put(2, "mick");
FIRSTNAMEMAP.put(3, "tom");
FIRSTNAMEMAP.put(4, "jerry");
} private static final Map<Integer, String> LASTNAME = new HashMap<Integer, String>();
static {
LASTNAME.put(0, "anderson");
LASTNAME.put(1, "watson");
LASTNAME.put(2, "ponting");
LASTNAME.put(3, "dravid");
LASTNAME.put(4, "lara");
} private static final Map<Integer, String> COMPANYNAME = new HashMap<Integer, String>();
static {
COMPANYNAME.put(0, "abc");
COMPANYNAME.put(1, "dfg");
COMPANYNAME.put(2, "pqr");
COMPANYNAME.put(3, "ecd");
COMPANYNAME.put(4, "awe");
} public void open(Map conf, TopologyContext context,
SpoutOutputCollector spoutOutputCollector) {
// Open the spout
this.spoutOutputCollector = spoutOutputCollector;
} public void nextTuple() {
// Storm cluster repeatedly call this method to emit the continuous //
// stream of tuples.
final Random rand = new Random();
// generate the random number from 0 to 4.
int randomNumber = rand.nextInt(5);
spoutOutputCollector.emit (new Values(FIRSTNAMEMAP.get(randomNumber),LASTNAME.get(randomNumber),COMPANYNAME.get(randomNumber)));
} public void declareOutputFields(OutputFieldsDeclarer declarer) {
// emit the field site.
declarer.declare(new Fields("firstName","lastName","companyName"));
}
}
StormRedisBolt
package bhz.storm.redis.example; import java.util.HashMap;
import java.util.Map;
import java.util.UUID; import backtype.storm.task.TopologyContext;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.IBasicBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple; public class StormRedisBolt implements IBasicBolt{ private static final long serialVersionUID = 2L;
private RedisOperations redisOperations = null;
private String redisIP = null;
private int port;
public StormRedisBolt(String redisIP, int port) {
this.redisIP = redisIP;
this.port = port;
} public void execute(Tuple input, BasicOutputCollector collector) {
Map<String, Object> record = new HashMap<String, Object>();
//"firstName","lastName","companyName")
record.put("firstName", input.getValueByField("firstName"));
record.put("lastName", input.getValueByField("lastName"));
record.put("companyName", input.getValueByField("companyName"));
redisOperations.insert(record, UUID.randomUUID().toString());
} public void declareOutputFields(OutputFieldsDeclarer declarer) { } public Map<String, Object> getComponentConfiguration() {
return null;
} public void prepare(Map stormConf, TopologyContext context) {
redisOperations = new RedisOperations(this.redisIP, this.port);
} public void cleanup() { } }
package bhz.storm.redis.example; import java.io.Serializable;
import java.util.Map; import com.fasterxml.jackson.databind.ObjectMapper; import redis.clients.jedis.Jedis; public class RedisOperations implements Serializable { private static final long serialVersionUID = 1L;
Jedis jedis = null; public RedisOperations(String redisIP, int port) {
// Connecting to Redis on localhost
jedis = new Jedis(redisIP, port);
} public void insert(Map<String, Object> record, String id) {
try {
jedis.set(id, new ObjectMapper().writeValueAsString(record));
} catch (Exception e) {
System.out.println("Record not persist into datastore : ");
}
}
}
大数据处理框架之Strom:redis storm 整合的更多相关文章
- 大数据处理框架之Strom: Storm----helloword
大数据处理框架之Strom: Storm----helloword Storm按照设计好的拓扑流程运转,所以写代码之前要先设计好拓扑图.这里写一个简单的拓扑: 第一步:创建一个拓扑类含有main方法的 ...
- 大数据处理框架之Strom:认识storm
Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Stor ...
- 大数据处理框架之Strom:Flume+Kafka+Storm整合
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...
- 大数据处理框架之Strom:kafka storm 整合
storm 使用kafka做数据源,还可以使用文件.redis.jdbc.hive.HDFS.hbase.netty做数据源. 新建一个maven 工程: pom.xml <project xm ...
- 大数据处理框架之Strom: Storm拓扑的并行机制和通信机制
一.并行机制 Storm的并行度 ,通过提高并行度可以提高storm程序的计算能力. 1.组件关系:Supervisor node物理节点,可以运行1到多个worker,不能超过supervisor. ...
- 大数据处理框架之Strom:Storm集群环境搭建
搭建环境 Red Hat Enterprise Linux Server release 7.3 (Maipo) zookeeper-3.4.11 jdk1.7.0_80 Pyth ...
- 大数据处理框架之Strom:DRPC
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 一.DRPC DRPC:Distri ...
- 大数据处理框架之Strom:容错机制
1.集群节点宕机Nimbus服务器 单点故障,大部分时间是闲置的,在supervisor挂掉时会影响,所以宕机影响不大,重启即可非Nimbus服务器 故障时,该节点上所有Task任务都会超时,Nimb ...
- 大数据处理框架之Strom:事务
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...
随机推荐
- linux之无公网ip的自动登录
场景 对于有公网ip的链接方式我们都比较清楚了,但是有些服务器不允许直接登录或者没有直接登录的公网ip,所以只能通过一个可以直接登录的堡垒机跳转.这时需要你手动去敲ssh远程链接命令(例如:ssh r ...
- inet_addr()和inet_ntoa()使用注意
inet_addr():无法处理255.255.255.255,认为该ip为非法,返回-1 inet_ntoa():转换后地址存储在静态变量中,连续两次调用,第二次会覆盖第一次的值. 建议使用inet ...
- ACM-最短路之中的一个个人的旅行——hdu2066
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/lx417147512/article/details/27235809 ************** ...
- UltraISO 9.7.0.3476中文完美破解安装版
https://cn.ultraiso.net/uiso9_cn.exe 简体中文版专用: 注册名:Guanjiu 注册码:A06C-83A7-701D-6CFC 多国语言版专用: 注册 ...
- sync修饰符的简易说明
其实这个就说的很好了. sync会自动更新父组件的数据 原本valuechild 的值是222,父页面显示的222,把值传递给子组件 子组件也显示的222, 我点击子组件的按钮 把333传递给父组件, ...
- [ Linux运维学习 ] 路径及实战项目合集
我们知道运维工程师(Operations)最基本的职责就是负责服务的稳定性并确保整个服务的高可用性,同时不断优化系统架构.提升部署效率.优化资源利用率,确保服务可以7*24H不间断地为用户提供服务. ...
- [LeetCode] 598. Range Addition II_Easy tag: Math
做个基本思路可以用 brute force, 但时间复杂度较高. 因为起始值都为0, 所以肯定是左上角的重合的最小的长方形就是结果, 所以我们求x, y 的最小值, 最后返回x*y. Code ...
- Linux和windows 查看程序、进程的依赖库的方法
Linux: 1. 利用ldd查看可执行程序的依赖库 [root@~]# ldd /usr/local/php/bin/php linux-vdso.so.1 => (0x00007ff ...
- python获取当前,昨天,明天时间
import datetime nowTime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')#现在 pastTimeMinutes = ...
- 转Git配置SSH,并Push到GitHub上的相关流程
首先,你可以试着输入git,看看系统有没有安装Git $ git The program 'git' is currently not installed. You can install it by ...