一、预处理部分

1.拿到数据首先对数据进行分析

对数据的分布有一个大致的了解,可以用画图函数查看所有类的分布情况。可以采取删除不合理类的方法来提高准确率;

对图像进行分析,在自定义的图像增强的多种方式中,尝试对图像进行变换,看是否存在主观上的特征增强,具体的增强

方法在aug.py文件中,可以在线下对数据进行测试,看是否在增强后对结果有好的影响。

2.模型的选取

依据新模型效果较好的原则,尽量选取已存在的最新模型,可以选取进几年再imagenet比赛上取得最好的效果的几种模型

分别进行测试,目前效果最好的模型是resnet(深度残差网络),是卷积神经网络的最新发展;

但仅仅单模型的效果肯定是不如多模型综合的效果好的,所以可以选取效果较好的几种模型,最后按其权重进行加权平均

来获取最终的预测结果;

始终要注意的一点是,模型是次要的,最主要最核心的问题还是在于对于数据的处理。

3.处理数据

对数据图像进行增强,不管是使用pytorch自带的transform模块,还是自定义的数据增强处理方式,都要对数据进行合理的

改变,最基本的改变是对图像进行简单的随机翻转、切割、旋转等,还有要注意的一点是需要改变图像的尺寸,以适应模型

的输入要求。

本次比赛数据进行的增强方式有:

  • RandomRotation(30)
  • RandomHorizontalFlip()
  • RandomVerticalFlip()
  • RandomAffine(45)

4.超参数的设置

对于整体代码中所需要的超参数进行单独处理,设置在一个文件中,使用时候直接调用即可。

二、输入数据进入模型进行训练

1.划分数据集

首先根据所给文件把每个类的图像都分类到各自的文件夹中去,模型的输入要求类型基本都是这样,然后对于数据集划分为

训练集、测试集、验证集,分别在模型的训练、测试阶段使用。

2.模型训练

根据pytorch的模型训练过程,输入训练集,对模型进行训练,每个epoch后对模型进行评价,在整个epoch结束后,得到最好

的模型。

3.测试阶段

把测试集输入保存的最好模型中去,得到输出结果,进行分析。

三、pytorch中的训练模块化

1.加载模型

2.优化器和loss函数的设置

3.训练集加载入pytorch的数据加载类Dataloader中,以便于调用

4.开始每个epoch的训练,输入,目标,loss,归零,反向传播,开始

5.评估模型,得出最优模型

参考大神chaojiezhu的github。

https://github.com/spytensor/plants_disease_detection

pytorch进行图像分类的流程,下一篇为实例源代码解析的更多相关文章

  1. 通过重建Hosting系统理解HTTP请求在ASP.NET Core管道中的处理流程[下]:管道是如何构建起来的?

    在<中篇>中,我们对管道的构成以及它对请求的处理流程进行了详细介绍,接下来我们需要了解的是这样一个管道是如何被构建起来的.总的来说,管道由一个服务器和一个HttpApplication构成 ...

  2. android7.x Launcher3源代码解析(3)---workspace和allapps载入流程

    Launcher系列目录: 一.android7.x Launcher3源代码解析(1)-启动流程 二.android7.x Launcher3源代码解析(2)-框架结构 三.android7.x L ...

  3. [源码解析] PyTorch 分布式 Autograd (6) ---- 引擎(下)

    [源码解析] PyTtorch 分布式 Autograd (6) ---- 引擎(下) 目录 [源码解析] PyTtorch 分布式 Autograd (6) ---- 引擎(下) 0x00 摘要 0 ...

  4. PyTorch在64位Windows下的Conda包(转载)

    PyTorch在64位Windows下的Conda包 昨天发了一篇PyTorch在64位Windows下的编译过程的文章,有朋友觉得能不能发个包,这样就不用折腾了.于是,这个包就诞生了.感谢@晴天14 ...

  5. 从零教你使用MindStudio进行Pytorch离线推理全流程

    摘要:MindStudio的是一套基于华为自研昇腾AI处理器开发的AI全栈开发工具平台,该IDE上功能很多,涵盖面广,可以进行包括网络模型训练.移植.应用开发.推理运行及自定义算子开发等多种任务. 本 ...

  6. 调用altera IP核的仿真流程—下

    调用altera IP核的仿真流程—下 编译 在 WorkSpace 窗口的 counter_tst.v上点击右键,如果选择Compile selected 则编译选中的文件,Compile All是 ...

  7. 基于modelsim-SE的简单仿真流程—下

    基于modelsim-SE的简单仿真流程—下 编译 在 WorkSpace 窗口的 counter_tst.v上点击右键,如果选择Compile selected 则编译选中的文件,Compile A ...

  8. phpcms新闻详情页上一篇下一篇的实现

    在新闻详情页(show.html或show_*.html) 只需要添加类似如下代码即可: <div>上一篇:<a href="{$previous_page[url]}&q ...

  9. PHPCMS 实现上一篇、下一篇

    方法一:直接调用phpcms系统的函数 <div class="info"> <span>上一篇:<a href="{$previous_p ...

随机推荐

  1. python3读取excel数据

    import xlrd worksheet = xlrd.open_workbook('XXXX.xlsx')   #打开excel文件 sheet_names= worksheet.sheet_na ...

  2. 单KEY业务,数据库水平切分架构实践 | 架构师之路

    https://mp.weixin.qq.com/s/8aI9jS0SXJl5NdcM3TPYuQ 单KEY业务,数据库水平切分架构实践 | 架构师之路 原创: 58沈剑 架构师之路 2017-06- ...

  3. 2017年蓝桥杯省赛A组c++第1题(走迷宫)

    /* 标题:迷宫 X星球的一处迷宫游乐场建在某个小山坡上. 它是由10x10相互连通的小房间组成的. 房间的地板上写着一个很大的字母. 我们假设玩家是面朝上坡的方向站立,则: L表示走到左边的房间, ...

  4. JDBC---Mysql(2)

    SQL注入攻击: 用户可以提交一段数据库查询代码,根据程序返回的结果,获得某些他想知道的数据,这就是所谓的SQL注入攻击, 例如:判断username='a' or 'a'='a';  true从而为 ...

  5. SQLAlchemy中时间格式化及将时间戳转成对应时间的方法-mysql

    https://blog.csdn.net/guoqianqian5812/article/details/80175866 方法很简答,都是借助于mysql数据库提供的函数将时间格式化方法 func ...

  6. Android抓包方法 之Fiddler代理

    1.抓包原理 Fiddler是类似代理服务器的形式工作,它能够记录所有你的电脑和互联网之间的http(S)通讯,可以查看.修改所有的“进出”的数据.使用代理地址:127.0.0.1, 默认端口:888 ...

  7. LeetCode 977 Squares of a Sorted Array 解题报告

    题目要求 Given an array of integers A sorted in non-decreasing order, return an array of the squares of ...

  8. base64简单使用

    加密: import base64 import random str ="aqwertyuiopasdfghjklzxcvbnm963.0852741,.;'" a = '人生苦 ...

  9. centos中文语言安装

    1.查看当前使用的系统语言 #echo LANG 2.查看系统是否安装中文 #locale 如有zh_cn,表示已经安装了中文语言 3.安装中文 #yum groupinstall chinese-s ...

  10. 写一致性原理以及quorum机制

    (1)consistency,one(primary shard),all(all shard),quorum(default)我们在发送任何一个增删改操作的时候,比如 PUT /index/type ...