题解——loj6281 数列分块入门5 (分块)
分块
若块内最大值为0或1,则不用再开方
然后暴力修改
可以证明,如果开方后向下取整,则最多开方4次一个数就会变成0或1
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
long long n,sz,num,belong[],a[],maxb[],sum[];
void calbe(int n){
for(int i=;i<=n;i++)
belong[i]=(i-)/sz+;
}
void reset(int x){
maxb[x]=;
sum[x]=;
for(int i=(x-)*sz+;i<=min(sz*x,n);i++){
maxb[x]=max(maxb[x],a[i]);
sum[x]+=a[i];
}
}
long long query(int l,int r){
int xl=belong[l];
int xr=belong[r];
long long ans=;
for(int i=l;i<=min(xl*sz,(long long)r);i++)
ans+=a[i];
if(xl!=xr){
for(int i=(xr-)*sz+;i<=r;i++)
ans+=a[i];
}
for(int i=xl+;i<=xr-;i++)
ans+=sum[i];
return ans;
}
void update(int l,int r){
int xl=belong[l];
int xr=belong[r];
for(int i=l;i<=min(xl*sz,(long long)r);i++){
a[i]=sqrt(a[i]);
}
reset(xl);
if(xl!=xr){
for(int i=(xr-)*sz+;i<=r;i++){
a[i]=sqrt(a[i]);
}
reset(xr);
}
for(int i=xl+;i<=xr-;i++){
if(maxb[i]<=)
continue;
for(int j=(i-)*sz+;j<=i*sz;j++)
a[j]=sqrt(a[j]);
reset(i);
}
}
int main(){
scanf("%lld",&n);
sz=sqrt(n);
num=n/sz;
if(n%sz)
num++;
calbe(n);
for(int i=;i<=n;i++)
scanf("%lld",&a[i]);
for(int i=;i<=num;i++)
reset(i);
for(int i=;i<=n;i++){
int opt,l,r,c;
scanf("%d %d %d %d",&opt,&l,&r,&c);
if(opt==)
update(l,r);
else
printf("%lld\n",query(l,r));
}
return ;
}
题解——loj6281 数列分块入门5 (分块)的更多相关文章
- LibreOJ 6277 数列分块入门 1(分块)
题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...
- LibreOJ 6280 数列分块入门 4(分块区间加区间求和)
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...
- LibreOJ 6278 数列分块入门 2(分块)
题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对 ...
- [Libre 6281] 数列分块入门 5 (分块)
水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...
- LOJ.6284.数列分块入门8(分块)
题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...
- LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)
题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...
- LibreOJ 6279 数列分块入门 3(分块+排序)
题解:自然是先分一波块,把同一个块中的所有数字压到一个vector中,将每一个vector进行排序.然后对于每一次区间加,不完整的块加好后暴力重构,完整的块直接修改标记.查询时不完整的块暴力找最接近x ...
- LOJ.6281.数列分块入门5(分块 区间开方)
题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...
- [Libre 6282] 数列分块入门 6 (分块)
原题:传送门 code: //By Menteur_Hxy #include<cstdio> #include<iostream> #include<algorithm& ...
随机推荐
- Spark学习之路 (二十三)SparkStreaming的官方文档
一.SparkCore.SparkSQL和SparkStreaming的类似之处 二.SparkStreaming的运行流程 2.1 图解说明 2.2 文字解说 1.我们在集群中的其中一台机器上提交我 ...
- 设计模式之模板方法模式:实现可扩展性设计(Java示例)
概述 在实际开发中,常常会遇到一项基本功能需要支撑不同业务的情况.比如订单发货,有普通的整包发货,有分销单的发货,采购单的发货,有多商品的整包或拆包发货等.要想支持这些业务的发货,显然不能在一个通用流 ...
- C# 设置按钮快捷键
参考自:http://www.csharpwin.com/csharpspace/3932r8132.shtml 一.C# button快捷键之第一种:Alt + *(按钮快捷键) 在Button按钮 ...
- [转载] Oracle之内存结构(SGA、PGA)
2011-05-10 14:57:53 分类: Linux 一.内存结构 SGA(System Global Area):由所有服务进程和后台进程共享: PGA(Program Global Area ...
- Step5:SQL Server 跨网段(跨机房)FTP复制
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 搭建过程(Process) 注意事项(Attention) 参考文献(References) ...
- double类型的数值计算
package jiajian; public class jiajian { public static void main(String[] args) { System.out.println( ...
- nfs共享文件搭建
Linux NFS服务器的安装与配置详解 一.NFS服务简介 NFS是Network File System(网络文件系统).主要功能是通过网络让不同的服务器之间可以共享文件或者目录.NFS客户端 ...
- The Little Prince-12/15
The Little Prince-12/15 明天四六级考试了呢!!!喵喵喵,愿大家都能取得好成绩. 星星美丽,因为里面有一朵看不见的花. 沙漠美丽,因为沙漠的某处隐藏着一口井. ————生活美好, ...
- BATJ等大厂最全经典面试题分享
金九银十,又到了面试求职高峰期,最近有很多网友都在求大厂面试题.正好我之前电脑里面有这方面的整理,于是就发上来分享给大家. 这些题目是网友去百度.蚂蚁金服.小米.乐视.美团.58.猎豹.360.新浪. ...
- 怎样从外网访问内网Django?
本地安装了一个Django,只能在局域网内访问,怎样从外网也能访问到本地的Django呢?本文将介绍具体的实现步骤. 准备工作 安装并启动Django 默认安装的Django端口是8000. 实现步骤 ...