首先对于原串建\(SAM\),我们可以发先在一个点\(i\)的\(right\)集合里的点的相似度就是\(len[i]\),于是可以将\(SAM\)的\(right\)集合通过\(set\)来启发式合并,每次加入新的点对\((i,j,len[i])\),最后离线询问二维数点就可以解决了

但是这样每次维护\(set\)加入的点对是平方级别的的 我们可以发现对于一个要加入的点\(i\)只需要找\(set\)里和他相邻的两个点 将他们的点对加入就好 其余点对不会影响答案

复杂度\(O(nlog^2n)\)

具体的看代码吧

#include<bits/stdc++.h>
using namespace std;
#define FO(x) {freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);}
#define pa pair<int,int>
#define mod 1000000007
#define ll long long
#define mk make_pair
#define pb push_back
#define fi first
#define se second
#define cl(x) memset(x,0,sizeof x)
#ifdef Devil_Gary
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
#define lowbit(x) x&(-x)
const int INF = 0x7fffffff;
const int N=2e5+5;
/*
char *TT,*mo,but[(1<<15)+2];
#define getchar() ((TT==mo&&(mo=(TT=but)+fread(but,1,1<<15,stdin),TT==mo))?-1:*TT++)//*/
inline int read(){
int x=0,rev=0,ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')rev=1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return rev?-x:x;
}
set<int>st[N];
typedef set<int>::iterator iter;
struct data{
int x,y,val;
}t[N],a[N<<5];
int lst,rt,n,m,sz,tot,ans[N],len[N],c[N][2],par[N],w[N],b[N],s[N];
char ss[N];
void extend(int x){
int np=++sz,p=lst;
len[np]=len[p]+1,lst=np;
for(;p&&!c[p][x];p=par[p]) c[p][x]=np;
if(!p) par[np]=rt;
else{
int q=c[p][x];
if(len[q]==len[p]+1) par[np]=q;
else{
int nq=++sz;
memcpy(c[nq],c[q],sizeof c[q]);
len[nq]=len[p]+1,par[nq]=par[q];
par[q]=par[np]=nq;
for(;p&&c[p][x]==q;p=par[p]) c[p][x]=nq;
}
}
}
void pre(){
for(int i=1;i<=sz;i++) w[len[i]]++;
for(int i=1;i<=sz;i++) w[i]+=w[i-1];
for(int i=sz;i;i--) b[w[len[i]]--]=i;
for(int i=sz;i>=2;i--){
int x=b[i],y=par[x];
if(st[x].size()>st[y].size()) swap(st[x],st[y]);
for(iter it=st[x].begin();it!=st[x].end();++it){
// iter w=lower_bound(st[y].begin(),st[y].end(),*it);
iter w=st[y].lower_bound(*it);
if(w!=st[y].end()) a[++tot]=(data){*it,*w,len[y]};
if(w!=st[y].begin()) a[++tot]=(data){*(--w),*it,len[y]};
}
for(iter it=st[x].begin();it!=st[x].end();it++) st[y].insert(*it);
}
}
bool cmp(data a,data b){
return a.x>b.x;
}
void add(int x,int v){
for(int i=x;i<=n;i+=lowbit(i)) s[i]=max(s[i],v);
}
int Query(int x){
int ans=0;
for(int i=x;i;i-=lowbit(i)) ans=max(ans,s[i]);
return ans;
}
int main(){
#ifdef Devil_Gary
freopen("A7.in","r",stdin);
#endif
n=read(),m=read(),rt=lst=sz=1,scanf("%s",ss+1);
for(int i=1;i<=n;i++) extend(ss[i]-'0'),st[lst].insert(i);
for(int i=1;i<=m;i++) t[i].x=read(),t[i].y=read(),t[i].val=i;
pre(),sort(t+1,t+m+1,cmp),sort(a+1,a+tot+1,cmp);
for(int i=1,j=1;i<=m;i++){
for(;j<=tot&&a[j].x>=t[i].x;j++) add(a[j].y,a[j].val);
ans[t[i].val]=Query(t[i].y);
}
for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
}

LOJ6041 SAM+set+树状数组的更多相关文章

  1. P7046-「MCOI-03」诗韵【SAM,倍增,树状数组】

    正题 题目链接:https://www.luogu.com.cn/problem/P7046 题目大意 给出一个长度为 \(n\) 的字符串,然后 \(m\) 次把它的一个子串加入集合.如果一个字符串 ...

  2. 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组

    题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...

  3. BZOJ 2754 [SCOI2012]喵星球上的点名 (AC自动机、树状数组)

    吐槽: 为啥很多人用AC自动机暴力跳都过了?复杂度真的对么? 做法一: AC自动机+树状数组 姓名的问题,中间加个特殊字符连起来即可. 肯定是对点名串建AC自动机(map存儿子),然后第一问就相当于问 ...

  4. BZOJ 2780 Sevenk Love Oimaster (后缀自动机+树状数组+dfs序+离线)

    题目大意: 给你$n$个大串和$m$个询问,每次给出一个字符串$s$询问在多少个大串中出现过 好神的一道题 对$n$个大串建出广义$SAM$,建出$parent$树 把字符串$s$放到$SAM$里跑, ...

  5. 51nod 麦克打电话(AC自动机+树状数组)

    SAM+线段树合并的裸题. 但我们讨论AC自动机的做法. 先建出AC自动机.考虑询问在[a,b]中出现的次数就是\([1,b]\)的出现次数-\([1,a-1]\)的出现次数.把询问离线.然后我们要求 ...

  6. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  7. bzoj1878--离线+树状数组

    这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...

  8. codeforces 597C C. Subsequences(dp+树状数组)

    题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

随机推荐

  1. setInterval的用法

    function show1(){    console.log("每隔1秒显示一次");}function show2(str){    console.log(str);}se ...

  2. Python3学习笔记13-函数的参数

    定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了.对于函数的调用者来说,只需要知道如何传递正确的参数, 以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了 ...

  3. 量化投资与Python之NumPy

      数组计算 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.NumPy的主要功能:ndarray,一个多维数组结构,高效且节省空间无需循环对整组数据进行快速运算的 ...

  4. centos6环境创建局域网http方式的yum源

    环境: yum服务器:centos 6.3 :192.168.8.20 yum源客户端:centos6.5 使用的主要rpm包来自centos6.5光盘 yum源服务器端配置: 1. 首先需要检查一下 ...

  5. SQL数据库基础知识

  6. Luogu P3616 【富金森林公园】

    我们首先考虑一块石头高度变化对每个高度的查询的答案的影响, 即我们要记录,对于每个高度的查询的答案 所以要离散化高度(不然哪开的下数组啊) 不难发现,一次变化的对于不同高度的影响,对于一段连续高度是相 ...

  7. springMVC源码分析--页面跳转RedirectView(三)

    之前两篇博客springMVC源码分析--视图View(一)和springMVC源码分析--视图AbstractView和InternalResourceView(二)中我们已经简单的介绍了View相 ...

  8. vue组件库(二):基于verdaccio工具npm私服搭建

    大纲 搭建npm私服的必要性 搭建npm私服的主要操作 一.搭建npm私服的必要性 二.搭建npm私服的主要操作 1.环境准备 确保服务器已安装以下包: node(必须) 安装了nodenpm,如果想 ...

  9. istringstream、ostringstream、stringstream 类介绍 和 stringstream类 clear函数的真正用途

    istringstream.ostringstream.stringstream 类介绍 和 stringstream类 clear函数的真正用途 来源: http://blog.csdn.net/T ...

  10. Code alignment 代码对齐改进(VS2017)

    In mathematics you always keep your equals lined up directly underneath the one above. It keeps it c ...