题意

dt {
font-weight: bold;
margin-top: 20px;
padding-left: 35px;
}

    dd {
box-shadow: 3px 3px 6px #888888;
background-color: rgba(210, 210, 255, 0.5);
padding: 20px;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
font-family: "Merriweather", serif;
font-size: 18px;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
} .desc-container {
color: rgba(210, 210, 255, 0.5);;
} pre {
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
</style>
    <dt></dt>
<dd>

Read problems statements in Mandarin chinese, Russian and Vietnamese as well.

Killjee is trying to unlock a treasure. The key to the treasure is encrypted using a string S and Q queries. In each query, you need to find the K-th letter of a hidden string which is formed from the string S.

To form the hidden string, you should sort all substrings of S in lexicographical order and concatenate them. For example, if S = "abc", the hidden string would be "aababcbbcc". (See the sample explanation for details.)

In each query, the value of K is encoded in the following way:

  • You're given two integers P and M.
  • Let's define G as the sum of ASCII values of answers to all previous queries (therefore, G = 0 for the first query).
  • The value of K for the current query is ( P · G ) % M + 1, where % denotes the modulo operator.

Input

  • The first line of the input contains a single string S.
  • The second line contains a single integer Q.
  • Q lines follow. Each of these lines contains two space-separated integers P and M.

Output

For each query, print a single line containing one character — the K-th letter of the hidden string.

Constraints

  • 1 ≤ |S| ≤ 2 · 105
  • 1 ≤ Q ≤ 2 · 105
  • 1 ≤ K,M ≤ length of hidden string
  • 1 ≤ P ≤ 109
  • S will consist only of lowercase English letters

Subtasks

Subtask #1 (5 points): 1 ≤ |S| ≤ 50

Subtask #2 (15 points):

  • 1 ≤ |S| ≤ 2000
  • 1 ≤ Q ≤ 25000

Subtask #3 (20 points): 1 ≤ Q ≤ 10

Subtask #4 (60 points): original constraints

Example

Input:

abc

3

1 1

2 3

5 6 Output: a

b

a

Explanation

The substrings of S are "a", "b", "c", "ab", "abc", "bc". The lexicographical order of these strings is "a", "ab", "abc", "b", "bc", "c", so the hidden string is "a"+"ab"+"abc"+"b"+"bc"+"c" = "aababcbbcc".

For query 1, G = 0, so K = ( P · G ) % M + 1 = ( 1 · 0 ) % 1 + 1 = 1. The 1-st character of the hidden string is 'a'. We add the ASCII value of 'a' (97) to G.

For query 2, G = 97, so K = ( 2 · 97 ) % 3 + 1 = 3. The 3-rd character of the hidden string is 'b'. We add the ASCII value of 'b' (98) to G.

For query 3, G = 195, so K = ( 5 · 195 ) % 6 + 1 = 4. The 4-th character of the hidden string is 'a'. We add the ASCII value of 'a' (97) to G.

字母(letter)

给定一个字符串S。取出S的所有子串,并按字典序从小到大排序,然后将这些排完序的字符串首尾相接,记为字符串T。有Q次询问,每次询问T中的第K个字符。

K是被加密的,每次询问给出两个正整数P, M,设G为之前所有询问答案的 ASCII 码之和。初始时G为0。则该次询问的K = (P ∗ G) mod M。

分析

跟所有子串有关,那肯定要么是后缀自动机,要么是后缀树。

考虑后缀自动机。即使后缀自动机单次询问可以做到线性,在这题也无施展之地。鉴于他DAWG的性质,没有什么东西可以维护。

然而后缀树就不一样了,[TJOI2015] 弦论有一种\(O(n+\log n)\)的做法,可以参考Mangoyang的博客。

实际上考虑 parent 可以进一步优化算法的复杂度,考虑原先的 parent 树一个节点代表的多个串都是最长的串的一个后缀,是一棵类似于前缀树的结构,这样不能适用于一些字典序上优美的性质。不妨将串反序插入到sam 中,这样每一个点能代表的多个串都是最长的串的前缀,这些串从长到短在字典序上一定是有序的。扩展到整棵树上,根据 \(minlen(u)=len(fa(u))+1\) ,每个点代表的字符串都比其祖先代表的字符串的字典序大。于是可以计算出每一棵子树代表了多少串,在 dfn 序上二分答案即可

类似的,也可以计算出后缀树每一颗子树代表的串的总长,并且通过构造可以使后缀树上字符串的字典序与 dfn 序同时有序。这样找到了后缀树上的一个节点后,考虑一个子串其所代表的串长度在 \([len(fa(u))+1,len(u)]\) 上连续,在这个节点上继续二分答案就可以找到第k个字符所在的子串及它的长度,再计算一下就能知道第k个字符在s中的位置了。时间复杂度\(O(n+q\log n)\)

后缀自动机本身之所以不能做这些事情,是因为没有很好的性质维护字典序。如果用dfs把所有路径按字典序找出来然后标号,节点重用很少,个数期望就是\(O(n^2)\)个。

代码

十年OI一场空,不开long long见祖宗。

co int N=4e5+10;
char s[N];
int n,last=1,tot=1;
int ch[N][26],len[N],fa[N],pos[N],siz[N];
il void extend(int c,int po){
int p=last,cur=last=++tot;
len[cur]=len[p]+1,pos[cur]=po,siz[cur]=1;
for(;p&&!ch[p][c];p=fa[p]) ch[p][c]=cur;
if(!p) fa[cur]=1;
else{
int q=ch[p][c];
if(len[q]==len[p]+1) fa[cur]=q;
else{
int clone=++tot;
copy(ch[q],ch[q]+26,ch[clone]);
len[clone]=len[p]+1,fa[clone]=fa[q],pos[clone]=pos[q];
fa[q]=fa[cur]=clone;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=clone;
}
}
}
int cnt[N],ord[N],e[N][26],ref[N],dfn;
ll sum[N];
void dfs(int u){
::ref[++dfn]=u;
sum[dfn]=(ll)siz[u]*(len[u]+len[fa[u]]+1)*(len[u]-len[fa[u]])/2;
for(int i=0;i<26;++i)if(e[u][i]) dfs(e[u][i]);
}
il int query(ll k){
int l=1,r=tot,mid;
while(l<r) sum[mid=l+r>>1]>=k?r=mid:l=mid+1;
k-=sum[l-1];
int x=::ref[l];
l=len[fa[x]]+1,r=len[x];
while(l<r){
mid=l+r>>1;
if((ll)siz[x]*(mid+len[fa[x]]+1)*(mid-len[fa[x]])/2>=k) r=mid;
else l=mid+1;
}
k-=(ll)siz[x]*(l+len[fa[x]])*(l-1-len[fa[x]])/2;
k=(k-1)%l+1;
return s[pos[x]+k-1];
}
int main(){
// freopen("letter.in","r",stdin),freopen("letter.out","w",stdout);
scanf("%s",s+1),n=strlen(s+1);
for(int i=n;i>=1;--i) extend(s[i]-'a',i);
for(int i=1;i<=tot;++i) ++cnt[len[i]];
for(int i=1;i<=n;++i) cnt[i]+=cnt[i-1];
for(int i=1;i<=tot;++i) ord[cnt[len[i]]--]=i;
for(int i=tot;i;--i) siz[fa[ord[i]]]+=siz[ord[i]];
for(int i=1;i<=tot;++i) e[fa[i]][s[pos[i]+len[fa[i]]]-'a']=i;
dfs(1),assert(dfn==tot);
for(int i=1;i<=dfn;++i) sum[i]+=sum[i-1];
ll G=0,P,M;
for(int Q=read<int>(),c;Q--;G+=c){
read(P),read(M);
printf("%c\n",c=query(P*G%M+1));
}
return 0;
}

CodeChef KILLKTH Killjee and k-th letter的更多相关文章

  1. 【干货】”首个“ .NET Core 验证码组件

    前言 众所周知,Dotnet Core目前没有图形API,以前的System.Drawing程序集并没有包含在Dotnet Core 1.0环境中.不过在dotnet core labs项目里可以见到 ...

  2. PHPExcel使用体会

    PHPExcel使用体会 因为毕设导师智能分配系统的需要,系负责人在管理学生和导师时,希望可以使用Excel批量导入学生和导师的信息,学长的报课系统使用的是PHPExcel的类库,于是我也抽空花了2天 ...

  3. Android学习笔记(十)——ListView的使用(上)

    //此系列博文是<第一行Android代码>的学习笔记,如有错漏,欢迎指正! ListView绝对可以称得上是 Android中最常用的控件之一,ListView允许用户通过手指上下滑动的 ...

  4. CCF认证(1)

    #include <iostream> #include <windows.h> using namespace std; typedef struct letter{ int ...

  5. 424. Longest Repeating Character Replacement

    以最左边为开始,往右遍历,不一样的个数大于K的时候停止,回到第一个不一样的地方,以它为开始,继续.. 用QUEUE记录每次不一样的INDEX,以便下一个遍历开始, 从左往右,从右往左各来一次..加上各 ...

  6. ASCII 码对应表

    Macron symbol ASCII CODE 238 : HTML entity : [ Home ][ español ] What is my IP address ? your public ...

  7. [Swift]LeetCode880. 索引处的解码字符串 | Decoded String at Index

    An encoded string S is given.  To find and write the decodedstring to a tape, the encoded string is ...

  8. CF613E Puzzle Lover

    题意 英文版题面 Problems Submit Status Standings Custom test .input-output-copier { font-size: 1.2rem; floa ...

  9. P1540 机器翻译 模拟

    题目背景 小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章. 题目描述 这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义来替换.对于每个英文单词,软件会先 ...

随机推荐

  1. Yii2.0 数据库查询 [ 2.0 版本 ]

    下面介绍一下 Yii2.0 对数据库 查询的一些简单的操作 User::find()->all(); 此方法返回所有数据: User::findOne($id); 此方法返回 主键 id=1 的 ...

  2. Linux下使用bind,epoll对网络编程封装

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  3. 使用GCD控制网络请求

    当,当山峰没有棱角的时候 当河水不再流 当时间停住日夜不分 当天地万物化为虚有!,,,,不好意思跑题了! 当我们在一个页面中需要进行多次网络请求才能满足页面所有的显示需要的时候,我们需要控制这些请求全 ...

  4. Linux3.10.0块IO子系统流程(3)-- SCSI策略例程

    很长时间以来,Linux块设备使用了一种称为“蓄流/泄流”(plugging/unplugging)的技术来改进吞吐率.简单而言,这种工作方式类似浴盆排水系统的塞子.当IO被提交时,它被储存在一个队列 ...

  5. Final阶段第1周/共1周 Scrum立会报告+燃尽图 06

    作业要求[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2485] 版本控制:https://git.coding.net/liuyy08 ...

  6. python+appium+yaml安卓UI自动化测试分享

    一.实现数据与代码分离,维护成本较低,先看看自动化结构,大体如下: testyaml管理用例,实现数据与代码分离,一个模块一个文件夹 public 存放公共文件,如读取配置文件.启动appium服务. ...

  7. L305 发邮件15分钟

    发个邮件-不用那么纠结-把事情讲清楚就好-限制在15分钟写完-长的邮件25分钟-难点是讲清楚细节-比如软件调试bug-DFM-这里有些专业词汇 发现问题:发给客户的There are some qua ...

  8. centos/7下安装mysql5.7

    本文参考自:https://blog.csdn.net/fanshujuntuan/article/details/78077433 背景:在ubuntu下用vagrant搭建了一个集群环境, 每个虚 ...

  9. ksort 函数

    foreach ($modules AS $key => $value){ ksort($modules[$key]);}ksort($modules); strpos(','.$_SESSIO ...

  10. SQL注入之Sqli-labs系列第二十三关(基于过滤的GET注入)

    开始挑战第二十三关(Error Based- no comments) 先尝试下单引号进行报错 再来利用and来测试下,加入注释符#,编码成%23同样的报错 再来试试--+,同样的效果 同样的,先看看 ...