Pandas的使用(2)

1.新建一个空的DataFrame数据类型

total_price = pd.DataFrame() #新建一个空的DataFrame

2.向空的DataFrame中逐行添加数据

realtime_price = ts.get_realtime_quotes(i) #得到股票当前价格
realtime_price_1 = realtime_price[['code','name','price','time']]
total_price = total_price.append(realtime_price_1,ignore_index=True) #ignore_index这个参数很重要

3.将AxesSubPlot类型的图片信息保存下来

根据stackoverflow上的解决方案:

则运用到程序中为:

import matplotlib.pyplot as plt
df_4.plot(title=i,figsize=(60,18))
plt.savefig('E:\stock_' + i + '.png')

4.绘制金融行业所有股票一年内的复权价格曲线图

import pandas as pd
import tushare as ts
import matplotlib.pyplot as plt df_1 = ts.get_industry_classified()
df_2 = df_1[df_1.c_name == '金融行业'] #找出属于金融行业的股票
stock_series = df_2['code'] #获取金融行业的股票代码
stock_series.to_csv('E:\金融行业.csv')
total_price = pd.DataFrame() #新建一个空的DataFrame for i in stock_series: #对这些股票依次进行处理
realtime_price = ts.get_realtime_quotes(i) #得到股票当前价格
realtime_price_1 = realtime_price[['code','name','price','time']]
total_price = total_price.append(realtime_price_1,ignore_index=True)
df_3 = ts.get_h_data(i) #得到各支股票近一年的复权数据
df_4 = df_3[['open','high','close','low']] #只需要开盘价,收盘价,最高价
df_4.plot(title=i,figsize=(60,18))
plt.savefig('E:\stock_' + i + '.png')

Pandas的使用(2)的更多相关文章

  1. pandas基础-Python3

    未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...

  2. 10 Minutes to pandas

    摘要   一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型   十.画图      十一 ...

  3. 利用Python进行数据分析(15) pandas基础: 字符串操作

      字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...

  4. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  5. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  6. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  7. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  8. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  9. pandas.DataFrame对行和列求和及添加新行和列

    导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFra ...

  10. pandas.DataFrame排除特定行

    使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame 如果我们想要像Excel的筛选那样,只要其中的一行或某几行,可以使用isin()方法,将需要的行的值以列 ...

随机推荐

  1. Homebrew&Mongod

    Homebrew官网:http://brew.sh Homebrew installs the stuff you need that Apple didn't Homebrew的安装非常简单,打开终 ...

  2. SQL注入之Sqli-labs系列第九关和第十关(基于时间盲注的注入)

    开始挑战第九关(Blind- Time based- Single Quotes- String)和第十关( Blind- Time based- Double Quotes- String) gog ...

  3. Maven项目的结构分析

    上图为简单的Maven结构,其中用src/main/resources写项目配置文件,src/main/java写项目的java文件,src/test/java写java测试类文件.

  4. C语言——第三次作业(2)

    作业要求一 PTA作业的提交列表 第一次作业 第二次作业 一道编程题: 有一个axb的数组,该数组里面顺序存放了从1到a*b的数字.其中a是你大学号的前三位数字,b是你大学号的后四位数字,比如你的学号 ...

  5. jsp-servlet(2)响应HTML文档-书籍管理系统

    基础知识预备:  目标: 构建一个书籍管理系统,实现以下功能. 功能: 1 图书信息查询,(查) 2 书籍管理:添加书籍 3 书籍管理:修改书籍信息 4 书籍管理:删除书籍 一.预备工作 Book{ ...

  6. Linux内存压力测试stressapptest

    /********************************************************************** * Linux内存压力测试stressapptest * ...

  7. 【转&改进】Linux MPI 单机配置

    MPI的全称是Message Passing Interface即标准消息传递界面,可以用于并行计算.MPI有多种实现版本,如MPICH, CHIMP以及OPENMPI.这里我们采用MPICH版本. ...

  8. Android强制横屏+全屏的几种常用方法

    全屏: 在Activity的onCreate方法中的setContentView(myview)调用之前添加下面代码 1 requestWindowFeature(Window.FEATURE_NO_ ...

  9. lecture4特征提取-七月在线-cv

    霍夫变换 http://blog.csdn.net/sudohello/article/details/51335237 http://blog.csdn.net/glouds/article/det ...

  10. Linux中ctrl+z,ctrl+d和ctrl+c的区别

    Ctrl-c Kill foreground processCtrl-z Suspend foreground processCtrl-d Terminate input, or exit shell