LeetCode 4 - 两个排序数组的中位数 - [分治]
题目链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/description/
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 。
请找出这两个有序数组的中位数。要求算法的时间复杂度为 O(log (m+n)) 。
你可以假设 nums1 和 nums2 不同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2] 中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4] 中位数是 (2 + 3)/2 = 2.5
题解:
考虑转化为求两个有序数组的第 $k$ 小数,
不妨先假设两个有序数组的长度都是大于等于 $c = \left\lfloor {\frac{k}{2}} \right\rfloor$ 的,比较 $A[c]$ 和 $B[c]$,有两种情况:
1、$A[c] \le B[c]$,那么两个数组合并之后,若 $B[1] \sim B[c]$ 的位置越往前靠,相应的 $A[c]$ 就越会往后靠,但显然 $B[c]$ 所在位置的最靠前情况是在第 $2c \le k$ 个,那么 $A[c]$ 所在位置的最差情况就是在第 $2c-1 \le k-1$ 个,因此 $A[1] \sim A[c]$ 必然在前 $k-1$ 小的数之中,可以将 $A[1] \sim A[c]$ 截去,不影响寻找第 $k$ 小数;
2、$A[c] > B[c]$,类似于情况2,可以将 $B[1] \sim B[c]$ 截去。
若两个有序数组的长度存在小于 $c = \left\lfloor {\frac{k}{2}} \right\rfloor$ 的情况呢?首先可以确定的是,就算存在这种情况,也肯定只有其中一个的长度会小于 $c$,
不妨设是 $A$ 数组的长度小于 $c$,那么,可以比较 $A[A.size]$ 和 $B[k-A.size]$,和上面也是一样的道理。
最后处理边界情况:当 $k=1$ 的时候,返回 $A[1]$ 和 $B[1]$ 中小的那一个即可;当两个数组中有一个为空的时候,就返回另一个数组的第 $k$ 个元素。
时间复杂度:
考虑是不断地让 $k$ 除以 $2$,直到 $k=1$ 时停止,故时间复杂度 $O(\log(k)) = O(\log(len)) = O(\log(m+n))$,满足题目要求。
AC代码:
class Solution
{
public:
int getkth(const vector<int>& nums1,int x,const vector<int>& nums2,int y,int k)
{
if(x>=nums1.size()) return nums2[y+k-]; //A数组为空
if(y>=nums2.size()) return nums1[x+k-]; //B数组为空
if(k==) return min(nums1[x],nums2[y]); int c1=min((int)nums1.size()-x,k/);
int c2=min((int)nums2.size()-y,k/);
if(nums1[x+c1-]<=nums2[y+c2-]) return getkth(nums1,x+c1,nums2,y,k-c1);
else return getkth(nums1,x,nums2,y+c2,k-c2);
}
double findMedianSortedArrays(vector<int>& nums1,vector<int>& nums2)
{
int len=nums1.size()+nums2.size();
if(len%) return getkth(nums1,,nums2,,(len+)/);
else return (getkth(nums1,,nums2,,len/)+getkth(nums1,,nums2,,len/+))/2.0;
}
};
这道题目,最令人震惊的是……
我新开一个vector把nums1和nums2的元素都扔进去然后sort了一下,$O(1)$ 输出中位数,明明 $O((m+n) \log(m+n))$ 的时间复杂度,居然和 $O(\log(m+n))$ 跑的一样快,都是52ms……
感觉自己搞了假的时间复杂度……
所以我开始怀疑,是不是LeetCode用了很水数据,实际上大部分时间是在其他什么地方耗费的,果然,关闭IO同步之后可以 16ms 内跑完:
static const auto io_sync_off = []()
{
// turn off sync
std::ios::sync_with_stdio(false);
// untie in/out streams
std::cin.tie(nullptr);
return nullptr;
}();
class Solution
{
public:
inline int getkth(const vector<int>& nums1,int x,const vector<int>& nums2,int y,int k)
{
if(x>=nums1.size()) return nums2[y+k-]; //A数组为空
if(y>=nums2.size()) return nums1[x+k-]; //B数组为空
if(k==) return min(nums1[x],nums2[y]); int c1=min((int)nums1.size()-x,k/);
int c2=min((int)nums2.size()-y,k/);
if(nums1[x+c1-]<=nums2[y+c2-]) return getkth(nums1,x+c1,nums2,y,k-c1);
else return getkth(nums1,x,nums2,y+c2,k-c2);
}
double findMedianSortedArrays(vector<int>& nums1,vector<int>& nums2)
{
int len=nums1.size()+nums2.size();
if(len%) return getkth(nums1,,nums2,,(len+)/);
else return (getkth(nums1,,nums2,,len/)+getkth(nums1,,nums2,,len/+))/2.0;
}
};
我还同样把上面 $O((m+n) \log(m+n))$ 的那个算法关了IO同步试了一下,耗时 32ms……这个 16ms 的差距,应该即使优化复杂度的结果了吧,还算有个安慰。
LeetCode 4 - 两个排序数组的中位数 - [分治]的更多相关文章
- LeetCode#5 两个排序数组的中位数
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 nums2 ...
- leetcode 4.两个排序数组的中位数
题目: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 nums ...
- leetcode,两个排序数组的中位数
先上题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 ...
- leetcode python两个排序数组的中位数
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 nums2 不同 ...
- LeetCode(4):两个排序数组的中位数
Hard! 题目描述: 有两个大小为 m 和 n 的排序数组 nums1 和 nums2 . 请找出两个排序数组的中位数并且总的运行时间复杂度为 O(log (m+n)) . 示例 1: nums1 ...
- LeetCode4. 两个排序数组的中位数
4. 两个排序数组的中位数 问题描述 There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the ...
- 2.Median of Two Sorted Arrays (两个排序数组的中位数)
要求:Median of Two Sorted Arrays (求两个排序数组的中位数) 分析:1. 两个数组含有的数字总数为偶数或奇数两种情况.2. 有数组可能为空. 解决方法: 1.排序法 时间复 ...
- LeetCode-4. 两个排序数组的中位数(详解)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/description/ 有两个大小为 m 和 n 的排序数组 nums ...
- JavaScript实现获取两个排序数组的中位数算法示例
本文实例讲述了JavaScript排序代码实现获取两个排序数组的中位数算法.分享给大家供大家参考,具体如下: 题目 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个 ...
随机推荐
- Dockerfile 构建kibana 反向代理应用做用户认证访问
FROM centos MAINTAINER z*****ch.cn RUN /bin/cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime & ...
- C#中回滚TransactionScope的使用方法和原理
TransactionScope只要一个操作失败,它会自动回滚,Complete表示事务完成 实事上,一个错误的理解就是Complete()方法是提交事务的,这是错误的,事实上,它的作用的表示本事 ...
- ql.io来自ebay的api快速集成的构建api的框架
说的有点绕口,实际上是为了减轻在Web上请求数据的复杂度,eBay推出了自己的Web查询语言——ql.io,ql.io将多个独立的API请求绑定成一个单独的请求. ---待续
- iBatis resultMap报错 nullValue完美解决
http://blog.csdn.net/liguohuaty/article/details/4038437
- Apache Spark 2.2.0 新特性详细介绍
本章内容: 待整理 参考文献: Apache Spark 2.2.0新特性详细介绍 Introducing Apache Spark 2.2
- JS 引擎执行机制
JS JS 是单线程语音 JS 的 Event Loop 是 JS 的执行机制.类似于 Android Handler 消息分发机制 JS 单线程 技术的出现都跟现实世界里的应用场景密切相关 JS 单 ...
- 物联网架构成长之路(22)-Docker练习之Etcd服务搭建
0. 前言 时隔多日,前段时间忙完一个可有可无的项目后,又进入摸鱼时间,没有办法,非互联网公司,就是闲得蛋疼.又开始了自学之路.以前入门过Docker,然后又很久没有看了,最近重新看了一下,推荐一下这 ...
- 一次性将多个文件夹批处理压缩成多个.rar
超级简单.不用自己写.bat批处理. 1. 打开winrar,选中所有要压缩的文件夹 2. 菜单->commands->add files to achive 3. 选中Files tab ...
- [教程]-三种空格unicode(\u00A0,\u0020,\u3000)表示的区别
1.不间断空格\u00A0,主要用在office中,让一个单词在结尾处不会换行显示,快捷键ctrl+shift+space ; 2.半角空格(英文符号)\u0020,代码中常用的; 3.全角空格(中文 ...
- 【iCore4 双核心板_FPGA】例程二:GPIO输入实验——识别按键输入
实验现象: 按键每按下一次,三色LED切换一次状态. 核心源代码: module key_ctrl( input clk_25m, input rst_n, input key, output fpg ...