关键词:mysqldump原理,--single-transaction,mysql备份原理

转自:https://www.cnblogs.com/cchust/p/5452557.html

MySQL备份原理详解

 

备份是数据安全的最后一道防线,对于任何数据丢失的场景,备份虽然不一定能恢复百分之百的数据(取决于备份周期),但至少能将损失降到最低。衡量备份恢复有两个重要的指标:恢复点目标(RPO)和恢复时间目标(RTO),前者重点关注能恢复到什么程度,而后者则重点关注恢复需要多长时间。这篇文章主要讨论MySQL的备份方案,重点介绍几种备份方式的原理,包括文件系统快照(LVM),逻辑备份工具Mysqldump,Mydumper,以及物理备份工具Xtrabackup,同时会详细讲解几种方案的优缺点,以及可能遇到的问题。

冷备份
     最简单的备份方式就是,关闭MySQL服务器,然后将data目录下面的所有文件进行拷贝保存,需要恢复时,则将目录拷贝到需要恢复的机器即可。这种方式确实方便,但是在生产环境中基本没什么作用。因为所有的机器都是要提供服务的,即使是Slave有时候也需要提供只读服务,所以关闭MySQL停服备份是不现实的。与冷备份相对应的一个概念是热备份,所谓热备份是在不影响MySQL对外服务的情况下,进行备份,热备份是这篇文章讨论的重点。

快照备份
     首先要介绍的热备份是快照备份,快照备份是指通过文件系统支持的快照功能对数据库进行备份。备份的原理是将所有的数据库文件放在同一分区中,然后对该分区执行快照工作,对于Linux而言,需要通过LVM(Logical Volumn Manager)来实现。LVM使用写时复制(copy-on-write)技术来创建快照,例如,对整个卷的某个瞬间的逻辑副本,类似于数据库中的innodb存储引擎的MVCC,只不过LVM的快照在文件系统层面,而MVCC在数据库层面,而且仅支持innodb存储引擎。LVM有一个快照预留区域,如果原始卷数据有变化时,LVM保证在任何变更写入之前,会复制受影响块到快照预留区域。简单来说,快照区域内保留了快照点开始时的一致的所有old数据。对于更新很少的数据库,快照也会非常小。对于MySQL而言,为了使用快照备份,需要将数据文件,日志文件都放在一个逻辑卷中,然后对该卷快照备份即可。由于快照备份,只能本地,因此,如果本地的磁盘损坏,则快照也就损坏了。快照备份更偏向于对误操作防范,可以将数据库迅速恢复到快照产生的时间点,然后结合二进制日志可以恢复到指定的时间点。基本原理如下图:

逻辑备份
      冷备份和快照备份由于其弊端在生产环境中很少使用,使用更多是MySQL自带的逻辑备份和物理备份工具,这节主要讲逻辑备份,MySQL官方提供了Mysqldump逻辑备份工具,虽然已经足够好,但存在单线程备份慢的问题。在社区提供了更优秀的逻辑备份工具mydumper,它的优势主要体现在多线程备份,备份速度更快。

Mysqldump
Mysqldump用于备份,不得不提两个关键的参数:
--single-transaction:在开始备份前,执行start transaction命令,以此来获取一致性备份,该参数仅对innodb存储引擎有效。
--master-data=2:主要用于记录一致性备份的位点。
理解Mysqldump工作原理,一定要将事务表(innodb)和非事务表(比如myisam)区别对待,因为备份的流程与此息息相关。而且,到目前为止,我们也无法规避myisam表,即使我们的所有业务表都是innodb,因为mysql库中系统表仍然采用的myisam表。备份的基本流程如下:

1.调用FTWRL(flush tables with read lock),全局禁止读写
2.设置会话隔离级别为RR,开启快照读事务,获取此时的快照(仅对innodb表起作用)
3.备份非innodb表数据(*.frm,*.myi,*.myd等)
4.非innodb表备份完毕后,释放FTWRL锁
5.逐一备份innodb表数据
6.备份完成。

整个过程,可以参考我同事的一张图,但他的这张图只考虑innodb表的备份情况,实际上在unlock tables执行完毕之前,非innodb表已经备份完毕,后面的t1,t2和t3实质都是innodb表,而且5.6的mysqldump利用保存点机制,每备份完一个表就将一个表上的MDL锁释放,避免对一张表锁更长的时间。这里可以参考我之前的blog:FLUSH TABLE WITH READ LOCK
大家可能有一个疑问,为啥备份innodb表之前,就已经将锁释放掉了,这实际上是利用了innodb引擎的MVCC机制,开启快照读后,就能获取那个时间的一致的数据,无论需要备份多长时间,直到整个事务结束(commit)为止。

Mydumper
     Mydumper原理与Mysqldump原理类似,最大的区别是引入了多线程备份,每个备份线程备份一部分表,当然并发粒度可以到行级,达到多线程备份的目的。这里要解决最大一个问题是,如何保证备份的一致性,其实关键还是在于FTWRL。对于非innodb表,在释放锁之前,需要将表备份完成。对于innodb表,需要确保多个线程都能拿到一致性位点,这个动作同样要在持有全局锁期间完成,因为此时数据库没有读写,可以保证位点一致。所以基本流程如下:

物理备份(Xtrabackup)
      相对于逻辑备份利用查询提取数据中的所有记录,物理备份更直接,拷贝数据库文件和日志来完成备份,因此速度会更快。当然,无论是开源的Mydumper还是官方最新的备份工具(5.7.11的mysqlpump)都支持了多线程备份,所以速度差异可能会进一步缩小,至少从目前生产环境来看,物理备份使用还是比较多的。由于Xtrabackup支持备份innodb表,实际生产环境中我们使用的工具是innobackupex,它是对xtrabackup的一层封装。innobackupex 脚本用来备份非 InnoDB 表,同时会调用 xtrabackup 命令来备份 InnoDB 表,innobackupex的基本流程如下:

1.开启redo日志拷贝线程,从最新的检查点开始顺序拷贝redo日志;
2.开启idb文件拷贝线程,拷贝innodb表的数据
3.idb文件拷贝结束,通知调用FTWRL,获取一致性位点
4.备份非innodb表(系统表)和frm文件
5.由于此时没有新事务提交,等待redo日志拷贝完成
6.最新的redo日志拷贝完成后,相当于此时的innodb表和非innodb表数据都是最新的
7.获取binlog位点,此时数据库的状态是一致的。
8.释放锁,备份结束。

  

Xtrabackup的改进
     从前面介绍的逻辑备份和物理备份来看,无论是哪种备份工具,为了获取一致性位点,都强依赖于FTWRL。这个锁杀伤力非常大,因为持有锁的这段时间,整个数据库实质上不能对外提供写服务的。此外,由于FTWRL需要关闭表,如有大查询,会导致FTWRL等待,进而导致DML堵塞的时间变长。即使是备库,也有SQL线程在复制来源于主库的更新,上全局锁时,会导致主备库延迟。从前面的分析来看,FTWRL这把锁持有的时间主要与非innodb表的数据量有关,如果非innodb表数据量很大,备份很慢,那么持有锁的时间就会很长。即使全部是innodb表,也会因为有mysql库系统表存在,导致会锁一定的时间。为了解决这个问题,Percona公司对Mysql的Server层做了改进,引入了BACKUP LOCK,具体而言,通过"LOCK TABLES FOR BACKUP"命令来备份非innodb表数据;通过"LOCK BINLOG FOR BACKUP"来获取一致性位点,尽量减少因为数据库备份带来的服务受损。我们看看采用这两个锁与FTWRL的区别:

LOCK TABLES FOR BACKUP
作用:备份数据
1.禁止非innodb表更新
2.禁止所有表的ddl
优化点:
1.不会被大查询堵塞(关闭表)
2.不会堵塞innodb表的读取和更新,这点非常重要,对于业务表全部是innodb的情况,则备份过程中DML完全不受损
UNLOCK TABLES

LOCK BINLOG FOR BACKUP
作用:获取一致性位点。
1.禁止对位点更新的操作
优化点:
1.允许DDl和更新,直到写binlog为止。
UNLOCK BINLOG

参考文档
http://mysql.taobao.org/monthly/2016/03/07/
https://www.percona.com/blog/2014/03/11/introducing-backup-locks-percona-server-2/
http://www.wtoutiao.com/p/1cbstSx.html
http://www.wtoutiao.com/p/10cEnZ7.html
http://www.wtoutiao.com/p/125vVWi.html
http://www.wtoutiao.com/p/120AXSH.html
http://www.cnblogs.com/cchust/p/4603599.html

转自:https://blog.csdn.net/cug_jiang126com/article/details/49824471

在mysqldump过程中,之前其实一直不是很理解为什么加了--single-transaction就能保证innodb的数据是完全一致的,而myisam引擎无法保证,必须加--lock-all-tables,前段时间抽空详细地查看了整个mysqldump过程。

理解master-data和--dump-slave
--master-data=2表示在dump过程中记录主库的binlog和pos点,并在dump文件中注释掉这一行;

--master-data=1表示在dump过程中记录主库的binlog和pos点,并在dump文件中不注释掉这一行,即恢复时会执行;

--dump-slave=2表示在dump过程中,在从库dump,mysqldump进程也要在从库执行,记录当时主库的binlog和pos点,并在dump文件中注释掉这一行;

--dump-slave=1表示在dump过程中,在从库dump,mysqldump进程也要在从库执行,记录当时主库的binlog和pos点,并在dump文件中不注释掉这一行;

注意:在从库上执行备份时,即--dump-slave=2,这时整个dump过程都是stop io_thread的状态

深入理解--single-transaction:
打开general_log,准备一个数据量较小的db,开启备份,添加--single-transaction和--master-data=2参数,查看general_log,信息如下,每一步添加了我的理解

整个dump过程是同一个连接id 32,这样能保证在设置session级别的变量的时候不影响到其他连接

thread_id: 32
 argument: ucloudbackup@localhost on 
*************************** 14. row ***************************
thread_id: 32
 argument: /*!40100 SET @@SQL_MODE='' */
*************************** 15. row ***************************
thread_id: 32
 argument: /*!40103 SET TIME_ZONE='+00:00' */
*************************** 16. row ***************************
thread_id: 32
 argument: FLUSH /*!40101 LOCAL */ TABLES
*************************** 17. row ***************************
thread_id: 32
 argument: FLUSH TABLES WITH READ LOCK
批注:因为开启了--master-data=2,这时就需要flush tables with read lock锁住全库,记录当时的master_log_file和master_log_pos点
*************************** 18. row ***************************
thread_id: 32
 argument: SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ
批注:--single-transaction参数的作用,设置事务的隔离级别为可重复读,即REPEATABLE READ,这样能保证在一个事务中所有相同的查询读取到同样的数据,也就大概保证了在dump期间,如果其他innodb引擎的线程修改了表的数据并提交,对该dump线程的数据并无影响,然而这个还不够,还需要看下一条
*************************** 19. row ***************************
thread_id: 32
 argument: START TRANSACTION /*!40100 WITH CONSISTENT SNAPSHOT */
这时开启一个事务,并且设置WITH CONSISTENT SNAPSHOT为快照级别(如果mysql版本高于某一个版本值,我还不大清楚40100代表什么版本)。想象一下,如果只是可重复读,那么在事务开始时还没dump数据时,这时其他线程修改并提交了数据,那么这时第一次查询得到的结果是其他线程提交后的结果,而WITH CONSISTENT SNAPSHOT能够保证在事务开启的时候,第一次查询的结果就是事务开始时的数据A,即使这时其他线程将其数据修改为B,查的结果依然是A,具体的测试看我下面的测试结果
*************************** 20. row ***************************
thread_id: 32
 argument: SHOW MASTER STATUS
这时候执行这个命令来记录当时的master_log_file和master_log_pos点,注意为什么这个时候记录,而不是再18 row和19 row之间就记录,个人认为应该都是可以的,这里是测试结果,start  transaction并不会产生binlog的移动,而18 row和19 row的动作也在同一个thread id中
mysql> show master status;
+------------------+----------+--------------+------------------+
| File             | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 |     1690 |              |                  |
+------------------+----------+--------------+------------------+
1 row in set (0.00 sec)

*************************** 21. row ***************************
thread_id: 32
 argument: UNLOCK TABLES
等记录完成后,就立即释放了,因为现在已经在一个事务中了,其他线程再修改数据已经无所谓,在本线程中已经是可重复读,这也是这一步必须在19 rows之后的原因,如果20 rows和21 rows都在19 rows之前的话就不行了,因为这时事务还没开启,一旦释放,其他线程立即就可以更改数据,从而无法保证得到事务开启时最准确的pos点。*************************** 22. row ***************************
thread_id: 32
 argument: SELECT LOGFILE_GROUP_NAME, FILE_NAME, TOTAL_EXTENTS, INITIAL_SIZE, ENGINE, EXTRA FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = 'UNDO LOG' AND FILE_NAME IS NOT NULL AND LOGFILE_GROUP_NAME IN (SELECT DISTINCT LOGFILE_GROUP_NAME FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = 'DATAFILE' AND TABLESPACE_NAME IN (SELECT DISTINCT TABLESPACE_NAME FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_SCHEMA='mysql' AND TABLE_NAME IN ('user'))) GROUP BY LOGFILE_GROUP_NAME, FILE_NAME, ENGINE ORDER BY LOGFILE_GROUP_NAME
*************************** 23. row ***************************
thread_id: 32
 argument: SELECT DISTINCT TABLESPACE_NAME, FILE_NAME, LOGFILE_GROUP_NAME, EXTENT_SIZE, INITIAL_SIZE, ENGINE FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = 'DATAFILE' AND TABLESPACE_NAME IN (SELECT DISTINCT TABLESPACE_NAME FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_SCHEMA='mysql' AND TABLE_NAME IN ('user')) ORDER BY TABLESPACE_NAME, LOGFILE_GROUP_NAME
*************************** 24. row ***************************
thread_id: 32
 argument: mysql
*************************** 25. row ***************************
thread_id: 32
 argument: SHOW TABLES LIKE 'user'
*************************** 26. row ***************************
thread_id: 32
 argument: show table status like 'user'
dump表以前都需要show一下各自信息,确保表,视图等不损坏,可用,每一步错了mysqldump都会报错并中断,给出对应的错误码,常见的myqldump错误请参考我的另外一篇blog http://blog.csdn.net/cug_jiang126com/article/details/49359699
*************************** 27. row ***************************
thread_id: 32
 argument: SET OPTION SQL_QUOTE_SHOW_CREATE=1
*************************** 28. row ***************************
thread_id: 32
 argument: SET SESSION character_set_results = 'binary'
*************************** 29. row ***************************
thread_id: 32
 argument: show create table `user`
*************************** 30. row ***************************
thread_id: 32
 argument: SET SESSION character_set_results = 'utf8'
*************************** 31. row ***************************
thread_id: 32
 argument: show fields from `user`
*************************** 32. row ***************************
thread_id: 32
 argument: SELECT /*!40001 SQL_NO_CACHE */ * FROM `user`
这就是我们show processlist时看到的信息,而数据是怎么通过一条select语句就dump到本地文件里的呢,并且还转成成相应的create和insert语句,这就是mysqldump这个客户端工具的工作了,这里不做讨论
*************************** 33. row ***************************
最后并没有看到commit,因为在整个事务中,其实并没有修改任何数据,只是为了保证可重复读得到备份时间点一致性的快照,dump完成后提交不提交应该无所谓了。

myisam引擎为什么无法保证在--single-transaction下得到一致性的备份?
因为它压根就不支持事务,自然就无法实现上述的过程,虽然添加了--single-transaction参数的myisam表处理过程和上面的完全一致,但是因为不支持事务,在整个dump过程中无法保证可重复读,无法得到一致性的备份。而innodb在备份过程中,虽然其他线程也在写数据,但是dump出来的数据能保证是备份开始时那个binlog pos的数据。

myisam引擎要保证得到一致性的数据的话,他是如何实现的呢?
它是通过添加--lock-all-tables,这样在flush tables with read lock后,直到整个dump过程结束,断开线程后才会unlock tables释放锁(没必要主动发unlock tables指令),整个dump过程其他线程不可写,从而保证数据的一致性

如果我一定要在mysiam引擎中也添加--single-transaction参数,再用这个备份去创建从库或恢复到指定时间点,会有什么样的影响?
我个人的理解是如果整个dump过程中只有简单的insert操作,是没有关系的,期间肯定会有很多的主键重复错误,直接跳过或忽略就好了。如果是update操作,那就要出问题了,分几种情况考虑

1) 如果是基于时间点的恢复,假设整个dump过程有update a  set id=5 where id=4之类的操作,相当于重复执行两次该操作,应该问题不大
2) 如果是创建从库,遇到上面的sql从库会报错,找不到该记录,这时跳过就好

3)不管是恢复还是创建从库,如果dump过程中有update a set id=id+5 之类的操作,那就有问题,重复执行两次,数据全变了。

深入理解--lock-all-tables
打开general_log,准备一个数据量较小的db,开启备份,添加--lock-all-tables(其实也是默认设置)和--master-data=2参数,查看general_log,信息如下,理解--lock-all-tables怎么保证数据一致性

mysql> select thread_id,argument from general_log  where thread_id=185\G
*************************** 1. row ***************************
thread_id: 185
 argument: ucloudbackup@10.10.108.15 on 
*************************** 2. row ***************************
thread_id: 185
 argument: /*!40100 SET @@SQL_MODE='' */
*************************** 3. row ***************************
thread_id: 185
 argument: /*!40103 SET TIME_ZONE='+00:00' */
*************************** 4. row ***************************
thread_id: 185
 argument: FLUSH /*!40101 LOCAL */ TABLES
*************************** 5. row ***************************
thread_id: 185
 argument: FLUSH TABLES WITH READ LOCK
这里flush tables with read lock之后就不会主动unlock tables,保证整个dump过程整个db数据不可更改,也没有事务的概念了
*************************** 6. row ***************************
thread_id: 185
 argument: SHOW MASTER STATUS
同样记录主库的位置
*************************** 7. row ***************************
thread_id: 185
 argument: SELECT LOGFILE_GROUP_NAME, FILE_NAME, TOTAL_EXTENTS, INITIAL_SIZE, ENGINE, EXTRA FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = 'UNDO LOG' AND FILE_NAME IS NOT NULL GROUP BY LOGFILE_GROUP_NAME, FILE_NAME, ENGINE ORDER BY LOGFILE_GROUP_NAME
*************************** 8. row ***************************
thread_id: 185
 argument: SELECT DISTINCT TABLESPACE_NAME, FILE_NAME, LOGFILE_GROUP_NAME, EXTENT_SIZE, INITIAL_SIZE, ENGINE FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = 'DATAFILE' ORDER BY TABLESPACE_NAME, LOGFILE_GROUP_NAME
*************************** 9. row ***************************
thread_id: 185
 argument: SHOW DATABASES
*************************** 10. row ***************************
thread_id: 185
 argument: jjj
*************************** 11. row ***************************
thread_id: 185
 argument: SHOW CREATE DATABASE IF NOT EXISTS `jjj`

测试可重复读和快照读(WITH CONSISTENT SNAPSHOT )
准备工作3.1(测试可重读)
session 1:
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
|    2 |
|    3 |
|    4 |
+------+
mysql> SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Query OK, 0 rows affected (0.00 sec)
设置事务隔离级别为可重复读

mysql> START TRANSACTION ;
Query OK, 0 rows affected (0.00 sec)
我们先不开快照读观察现象

session 2:
mysql> insert into xx values (5);
Query OK, 1 row affected (0.00 sec)

session 1:
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
|    2 |
|    3 |
|    4 |
|    5 |
+------+
5 rows in set (0.00 sec)
批注:这时因为没有设置快照读,所以当session 2有数据更新时,可查到该数据,接

下来我们继续在session 2 插入数据
session 2:
mysql> insert into xx values (6);
Query OK, 1 row affected (0.00 sec)

这时再观察session 1的数据
session 1
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
|    2 |
|    3 |
|    4 |
|    5 |
+------+
5 rows in set (0.00 sec)
查询发现还是只有5条,表示可重复实现了。
准备工作3.2(测试快照读)
session 1
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
+------+
1 row in set (0.00 sec)
mysql> SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Query OK, 0 rows affected (0.00 sec)
mysql> START TRANSACTION /*!40100 WITH CONSISTENT SNAPSHOT */;
Query OK, 0 rows affected (0.00 sec)

这时我们在session 2插入数据
session 2:
mysql> insert into xx values (2);
Query OK, 1 row affected (0.00 sec)

这时我们再观察session 1的结果
session 1:
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
+------+
1 row in set (0.00 sec)
发现还是只有一条数据,证明实现了快照读
mysql> commit;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
|    2 |
+------+
2 rows in set (0.00 sec)
事务1 提交后方可看见第二条记录
---------------------
作者:胡儿胡儿
来源:CSDN
原文:https://blog.csdn.net/cug_jiang126com/article/details/49824471
版权声明:本文为博主原创文章,转载请附上博文链接!

(4.13)mysql备份原理(转)的更多相关文章

  1. 05-雷海林-mysql备份原理与在TDSQL中的实践

    05-雷海林-mysql备份原理与在TDSQL中的实践 下载地址: http://files.cnblogs.com/files/MYSQLZOUQI/05-%E9%9B%B7%E6%B5%B7%E6 ...

  2. (转)MySQL备份原理详解

    MySQL备份原理详解 原文:http://www.cnblogs.com/cchust/p/5452557.html 备份是数据安全的最后一道防线,对于任何数据丢失的场景,备份虽然不一定能恢复百分之 ...

  3. MySQL备份原理详解

    备份是数据安全的最后一道防线,对于任何数据丢失的场景,备份虽然不一定能恢复百分之百的数据(取决于备份周期),但至少能将损失降到最低.衡量备份恢复有两个重要的指标:恢复点目标(RPO)和恢复时间目标(R ...

  4. (4.16)mysql备份还原——物理备份之XtraBackup实践

    关键词:XtraBackup实践,物理备份,xtrabackup备份,innobackupex备份 [1]如何使用? [3]系列:innobackupex --help |more [4]系列:xtr ...

  5. 学一点 mysql 双机异地热备份----快速理解mysql主从,主主备份原理及实践

    双机热备的概念简单说一下,就是要保持两个数据库的状态 自动同步.对任何一个数据库的操作都自动应用到另外一个数据库,始终保持两个数据库数据一致. 这样做的好处多. 1. 可以做灾备,其中一个坏了可以切换 ...

  6. MySQL 分区表原理及数据备份转移实战

    MySQL 分区表原理及数据备份转移实战 1.分区表含义 分区表定义指根据可以设置为任意大小的规则,跨文件系统分配单个表的多个部分.实际上,表的不同部分在不同的位置被存储为单独的表.用户所选择的.实现 ...

  7. 快速理解mysql主从,主主备份原理及实践

    感谢大家在上一篇 学一点Git--20分钟git快速上手 里的踊跃发言.这里再次分享干货, 简单介绍mysql双机,多机异地热备简单原理实战. 双机热备的概念简单说一下,就是要保持两个数据库的状态自动 ...

  8. MySQL备份利器-xtrabackup的介绍和原理(附脑图)

    标签(linux): mysql-xtrabackup 笔者Q:972581034 交流群:605799367.有任何疑问可与笔者或加群交流 xtrabackup是Percona公司针对mysql数据 ...

  9. MariaDB/MySQL备份和恢复(三):xtrabackup用法和原理详述

    本文目录: 1.安装xtrabackup 2.备份锁 3.xtrabackup备份原理说明 3.1 备份过程(backup阶段) 3.2 准备过程(preparing阶段) 3.3 恢复过程(copy ...

随机推荐

  1. [人物存档]【AI少女】【捏脸数据】现代风格

    点击下载:6543d037acaf2edd03b4679f821001e9380193ce.png

  2. layui 批量上传

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="piclist.aspx.c ...

  3. B/S文件上传下载解决方案

    需求: 项目要支持大文件上传功能,经过讨论,初步将文件上传大小控制在20G内,因此自己需要在项目中进行文件上传部分的调整和配置,自己将大小都以20G来进行限制. PC端全平台支持,要求支持Window ...

  4. cmake 简单操作

    实例一: main.c #include <stdio.h> int main( int argc, char *argv[] ) { printf("hello cmake!\ ...

  5. sklearn pca降维

    PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. ...

  6. Spring boot之JPA/Hibernate/Spring Data

    1.什么是JPA? JPA全称Java Persistence API.JPA通过JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对象持久化到数据库中. JPA(Java Per ...

  7. Java并发编程的艺术笔记(四)——ThreadLocal的使用

    ThreadLocal,即线程变量,是一个以ThreadLocal对象为键.任意对象为值的存储结构.这个结构被附带在线程上,也就是说一个线程可以根据一个ThreadLocal对象查询到绑定在这个线程上 ...

  8. ajax报告申请添加

    function reportApplyAddFun(){ $("#dlg").dialog("open").dialog("center" ...

  9. 第十四周课程总结&记事本功能的简单实现。

    (1)课程总结: 这周简单学习了下JDBC的内容: JDBC API 允许用户访问任何形式的表格数据,尤其是存储在关系数据库中的数据. 执行流程: (1)连接数据源,如:数据库. (2)为数据库传递查 ...

  10. typescript 函数(定义、参数、重载)

    代码: // 本节内容 // 1.函数的定义 // 2.参数(可选参数/默认参数/剩余参数) // 3.方法的重载 // js // function add(x,y){ // return x+y ...