传送门

解题思路

  神仙题。调了一个晚上+半个上午。。这道咋看咋都不像图论的题竟然用费用流做,将行+列为奇数的点和偶数的点分开,也就是匹配问题,然后把一个点复制四份,分别代表这个点的上下左右接头,如果有这个接头就加一个费用为\(0\),流量为\(1\)的边,如果没有要分情况讨论,因为从源点到这个点的流量是固定的,当只有一个接头时,可以让这个点向自己其余三个点连费用为\(1\),流量为\(1\)的边,当有两个接头并且两个接头相邻时,让这个点的两个接头分别与对应的方向连边,当有三个接头时,让那个没有的接头向相邻的连费用为\(1\)的边,向相对的连费用为\(2\)的边。然后一边费用流就行了。代码比较丑。建图写挫了。。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cstdlib> using namespace std;
const int MAXN = 10005;
const int MAXM = 100005;
const int inf = 0x3f3f3f3f;
const int zz[4] = {1,2,4,8}; // 0 1 2 3 inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='0'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,m,head[MAXN],to[MAXM<<1],nxt[MAXM<<1],val[MAXM<<1],cost[MAXM<<1],pre[MAXN];
int S,T,cnt=1,maxflow,ans,dis[MAXN],ch[MAXN][5],num,tot,sum,pos[2005][2005];
int incf[MAXN],all;
bool vis[MAXN];
queue<int> Q; inline void add(int bg,int ed,int z,int w){
to[++cnt]=ed,nxt[cnt]=head[bg],val[cnt]=z,cost[cnt]=w,head[bg]=cnt;
} inline void solve1(int p,int x,int op){
for(int i=0;i<=3;i++)
if((x&zz[i])) {
if(op&1) add(p,ch[p][i],1,0),add(ch[p][i],p,0,0);
else add(ch[p][i],p,1,0),add(p,ch[p][i],0,0);
if(i<2) {
if(op&1) add(p,ch[p][i+2],1,2),add(ch[p][i+2],p,0,-2);
else add(ch[p][i+2],p,1,2),add(p,ch[p][i+2],0,-2);
}
else {
if(op&1) add(p,ch[p][i-2],1,2),add(ch[p][i-2],p,0,-2);
else add(ch[p][i-2],p,1,2),add(p,ch[p][i-2],0,-2);
}
if(op&1){
add(p,ch[p][(i+1)%4],1,1),add(ch[p][(i+1)%4],p,0,-1);
add(p,ch[p][(i+3)%4],1,1),add(ch[p][(i+3)%4],p,0,-1);
}
else{
add(ch[p][(i+1)%4],p,1,1),add(p,ch[p][(i+1)%4],0,-1);
add(ch[p][(i+3)%4],p,1,1),add(p,ch[p][(i+3)%4],0,-1);
}
}
} inline void solve2(int p,int x,int op){
if(x==5 || x==10){
for(int i=0;i<=3;i++)
if(x&zz[i]){
if(op&1) add(p,ch[p][i],1,0),add(ch[p][i],p,0,0);
else add(ch[p][i],p,1,0),add(p,ch[p][i],0,0);
}
return ;
}
for(int i=0;i<=3;i++){
if(x&zz[i]){
if(op&1) add(p,ch[p][i],1,0),add(ch[p][i],p,0,0);
else add(ch[p][i],p,1,0),add(p,ch[p][i],0,0);
}
else{
if(i<2) {
if((op&1))
add(ch[p][i+2],ch[p][i],1,1),add(ch[p][i],ch[p][i+2],0,-1);
else
add(ch[p][i],ch[p][i+2],1,1),add(ch[p][i+2],ch[p][i],0,-1);
}
else {
if((op&1))
add(ch[p][i-2],ch[p][i],1,1),add(ch[p][i],ch[p][i-2],0,-1);
else
add(ch[p][i],ch[p][i-2],1,1),add(ch[p][i-2],ch[p][i],0,-1);
}
}
}
} inline void solve3(int p,int x,int op){
for(int i=0;i<=3;i++){
if(x&zz[i]){
if(op&1) add(p,ch[p][i],1,0),add(ch[p][i],p,0,0);
else add(ch[p][i],p,1,0),add(p,ch[p][i],0,0);
}
else {
if((op&1)){
add(ch[p][(i+1)%4],ch[p][i],1,1);
add(ch[p][i],ch[p][(i+1)%4],0,-1);
add(ch[p][(i+3)%4],ch[p][i],1,1);
add(ch[p][i],ch[p][(i+3)%4],0,-1);
if(i<2) {
add(ch[p][i+2],ch[p][i],1,2);
add(ch[p][i],ch[p][i+2],0,-2);
}
else {
add(ch[p][i-2],ch[p][i],1,2);
add(ch[p][i],ch[p][i-2],0,-2);
}
}
else{
add(ch[p][i],ch[p][(i+1)%4],1,1);
add(ch[p][(i+1)%4],ch[p][i],0,-1);
add(ch[p][i],ch[p][(i+3)%4],1,1);
add(ch[p][(i+3)%4],ch[p][i],0,-1);
if(i<2) {
add(ch[p][i],ch[p][i+2],1,2);
add(ch[p][i+2],ch[p][i],0,-2);
}
else {
add(ch[p][i],ch[p][i-2],1,2);
add(ch[p][i-2],ch[p][i],0,-2);
}
}
}
}
} inline void solve4(int p,int op){
for(int i=0;i<=3;i++){
if(op&1) add(p,ch[p][i],1,0),add(ch[p][i],p,0,0);
else add(ch[p][i],p,1,0),add(p,ch[p][i],0,0);
}
} bool spfa(){
while(Q.size()) Q.pop();
memset(dis,0x3f,sizeof(dis));
memset(vis,false,sizeof(vis));
vis[S]=1;dis[S]=0;incf[S]=inf;Q.push(S);
while(Q.size()){
int x=Q.front();Q.pop();vis[x]=0;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(dis[u]>cost[i]+dis[x] && val[i]) {
dis[u]=cost[i]+dis[x];
incf[u]=min(incf[x],val[i]);
pre[u]=i;
if(!vis[u]) vis[u]=1,Q.push(u);
}
}
}
return (dis[T]==inf)?false:true;
} inline void update(){
int x=T,i;
while(x!=S){
i=pre[x];
val[i]-=incf[T];
val[i^1]+=incf[T];
x=to[i^1];
}
maxflow+=incf[T];
ans+=incf[T]*dis[T];
} int main(){
n=rd(),m=rd();S=++num;T=++num;int x,p;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
x=rd();p=++num;pos[i][j]=p;
for(int k=0;k<=3;k++) ch[p][k]=++num;
tot=__builtin_popcount(x);
if((i+j)&1) add(S,p,tot,0),add(p,S,0,0);
else add(p,T,tot,0),add(T,p,0,0);
if(tot==1) solve1(p,x,i+j);
else if(tot==2) solve2(p,x,i+j);
else if(tot==3) solve3(p,x,i+j);
else solve4(p,i+j);
sum+=tot;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
if(!((i+j)&1)) continue;
if(i!=1){
add(ch[pos[i][j]][0],ch[pos[i-1][j]][2],1,0);
add(ch[pos[i-1][j]][2],ch[pos[i][j]][0],0,0);
}
if(j!=1){
add(ch[pos[i][j]][3],ch[pos[i][j-1]][1],1,0);
add(ch[pos[i][j-1]][1],ch[pos[i][j]][3],0,0);
}
if(i!=n){
add(ch[pos[i][j]][2],ch[pos[i+1][j]][0],1,0);
add(ch[pos[i+1][j]][0],ch[pos[i][j]][2],0,0);
}
if(j!=m){
add(ch[pos[i][j]][1],ch[pos[i][j+1]][3],1,0);
add(ch[pos[i][j+1]][3],ch[pos[i][j]][1],0,0);
}
}
if(sum&1) {puts("-1");return 0;}
sum>>=1;
while(spfa()) update();
if(maxflow!=sum) puts("-1");
else printf("%d\n",ans);
return 0;
}

BZOJ 5120: [2017国家集训队测试]无限之环(费用流)的更多相关文章

  1. bzoj 5120 [2017国家集训队测试]无限之环——网络流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5120 旋转的话相当于去掉一个插头.新增一个插头,所以在这两个插头之间连边并带上费用即可. 网 ...

  2. bzoj 5120: [2017国家集训队测试]无限之环【最小费用最大流】

    玄妙的建图-- 这种平衡度数的题按套路是先黑白染色然后分别连ST点,相邻格子连黑向白连费用1流量0的边,然后考虑费用怎么表示 把一个点拆成五个,上下左右中,中间点黑白染色连ST, 对于连S的点,中点连 ...

  3. BZOJ5120 [2017国家集训队测试]无限之环 费用流

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5120 题意概括 原题挺简略的. 题解 本题好难. 听了任轩笛大佬<国家队神犇>的讲课才 ...

  4. [BZOJ5120] [2017国家集训队测试]无限之环

    Description 曾经有一款流行的游戏,叫做InfinityLoop,先来简单的介绍一下这个游戏: 游戏在一个n×m的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在方格某些方向的边界的中 ...

  5. BZOJ.5120.[清华集训2017]无限之环(费用流zkw 黑白染色)

    题目链接 LOJ 洛谷 容易想到最小费用最大流分配度数. 因为水管形态固定,每个点还是要拆成4个点,分别当前格子表示向上右下左方向. 然后能比较容易地得到每种状态向其它状态转移的费用(比如原向上的可以 ...

  6. BZOJ_2622_[2012国家集训队测试]深入虎穴_最短路

    BZOJ_2622_[2012国家集训队测试]深入虎穴_最短路 Description 虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物 ...

  7. 【BZOJ2622】[2012国家集训队测试]深入虎穴 次短路

    [BZOJ2622][2012国家集训队测试]深入虎穴 Description 虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物,例如“ ...

  8. 2017国家集训队作业Atcoder题目试做

    2017国家集训队作业Atcoder题目试做 虽然远没有达到这个水平,但是据说Atcoder思维难度大,代码难度小,适合我这种不会打字的选手,所以试着做一做 不知道能做几题啊 在完全自己做出来的题前面 ...

  9. 2017国家集训队作业[agc016b]Color Hats

    2017国家集训队作业[agc016b]Color Hats 题意: 有\(N\)个人,每个人有一顶帽子.帽子有不同的颜色.现在,每个人都告诉你,他看到的所有其它人的帽子共有多少种颜色,问有没有符合所 ...

随机推荐

  1. 【InnoDB】体系结构

    一.概述: innodb的整个体系架构就是由多个内存块组成的缓冲池及多个后台线程构成.缓冲池缓存磁盘数据(解决cpu速度和磁盘速度的严重不匹配问题),后台进程保证缓存池和磁盘数据的一致性(读取.刷新) ...

  2. 高精度小数BigDecimal+二分——java

    高精度小数第一题 import java.util.*; import java.math.*; public class Main { public static void main(String ...

  3. CPU、内存、磁盘三者的关系

    参考:https://blog.csdn.net/weini1111/article/details/70849332 cpu是大脑,计算数据用的. 内存是草稿纸,开着电脑一直都在用里边的数据,如果断 ...

  4. 57、saleforce学习笔记(四)

    List类 List在这里就是一个类 List<String> lists = new String[]{'1','3'}; List<String> list1 = new ...

  5. ORA-06550/PLS-00103

    原因是单引号‘是需要加转义字符的(即‘—>“)

  6. 以您熟悉的编程语言为例完成一个hello/hi的简单的网络聊天程序

    Socket通常也称作"套接字",用于描述IP地址和端口,是一个通信链的句柄,可以用来实现不同虚拟机或不同计算机之间的通信,应用程序通常通过"套接字"向网络发出 ...

  7. Java 实例 - 方法重载

    先来看下方法重载(Overloading)的定义:如果有两个方法的方法名相同,但参数不一致,哪么可以说一个方法是另一个方法的重载. 具体说明如下: 方法名相同 方法的参数类型,个数顺序至少有一项不同 ...

  8. Nehe OpenGL教程第一课-创建一个OpenGL窗口(Win32)

       原文英文地址为:Creating an OpenGL Window (Win32),翻译的chm中文格式文档下载地址为:OpenGL教程电子书(chm格式)中文版,源代码在官网上也可以下载到,每 ...

  9. Python 字符串常用判断函数

    判断字符串常用函数: S代表某字符串 S.isalnum()  所有字符都是数字或字母,为真返回Ture,否则返回False S.isalha()     所有字符都是字母,为真返回Ture,否则返回 ...

  10. 在知乎上看到的几个关于C的奇淫技巧

    有一个鲜为人知的运算符叫”趋向于”, 写作“-->”.比如说如果要实现一个倒数的程序,我们可以定义一个变量x,然后让它趋向与0: 输出: 然后我们把 "x-->0" 换 ...