P2258子矩阵
一道看起来就很暴力的题。
这道题不仅暴力,还要用正确的姿势打开暴力。
因为子矩阵的参数有两个,一个行一个列(废话)
我们一次枚举两个参数很容易乱对不对?所以我们先枚举行,再枚举列
枚举完行,列,就计算一次当前子矩阵的分数,与ans取min。
代码:
但是复杂度会高到爆炸。来我们深吸一口O2。
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
int ma[][],n,m,r,c,ans=,ch[],cl[];
void js()
{ int an=;
for(int i=;i<=r;i++)//求子矩阵左右的差的绝对值
for(int j=;j<=c;j++)
an+=abs(ma[ch[i]][cl[j]]-ma[ch[i]][cl[j-]]);
for(int i=;i<=r;i++)//求上下的差的绝对值
for(int j=;j<=c;j++)
an+=abs(ma[ch[i]][cl[j]]-ma[ch[i-]][cl[j]]);
ans=min(ans,an);
}
void dfs(int x,int y,int nr,int nc)//x:当前枚举的行在原矩阵中是第x行,y:当前枚举的列在原矩阵中是第y列,nr:将要枚举的行的数量,nc:将要枚举的列的数量
{
if(nc==c+)
{
js();
return;
}
if((x>n&&nr!=r+)||(y>m&&nc!=c+))return ;
if(nr==r+)//当枚举完行了之后,枚举列
{
for(int i=y;i<=m;i++)
{
cl[nc]=i;
dfs(x,i+,nr,nc+);
}
}
else//枚举行
{
for(int i=x;i<=n;i++)
{
ch[nr]=i;
dfs(i+,y,nr+,nc);
}
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&r,&c);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&ma[i][j]);
dfs(,,,);
printf("%d",ans);
}
TTTLE
还是T成这种美丽的图形
你看它T的多有美感
好了我们仔(ting)细(xue)思(zhang)考(jiang)怎么不吸氧通过剩下这几个点
能(xue)想(zhang)到(shuo)用dp来解决这道题。
但是这道题实在是太暴力了,所以我们还是得先暴力一下。
我们依旧先枚举行。然后对列进行dp。
设ver[i]为第i列的元素上下之差的绝对值之和,del[i][j]是第i列与第j列每行的元素之差的绝对值之和,d[i][j]为前i列,选择了j列,这j列中一定有第i列时的最小得分。
简单的画一下ver和del
ver:
每一个元素减上面那个元素的差的绝对值加起来就是ver
del:
每一行右边减左边的差的绝对值加起来就是del
我们考虑dp[i][j]的转移方程
dp[i][j]可以由dp[i-1][j-1]再选上第i列得到,可以由dp[i-2][j-1]再选第i列得到,可以由dp[i-3][j-1]得到……
所以状态转移方程就是dp[i][j]=min{dp[i][j],dp[i-k][j-1]+ver[i]+del[i-k][i]}(1<=k,i-k>=j-1)
最终答案就是dp[i][c](c<=i<=m)的最小值
#include<bits/stdc++.h>
using namespace std;
int ma[][],n,m,r,c,ans=,ver[],del[][],d[][],ch[];//ch是选择的行
void dp()
{
memset(d,,sizeof(d));//千万不要memset成0
memset(ver,,sizeof(ver));
memset(del,,sizeof(del));
for(int i=;i<=m;i++)//枚举第i列
for(int j=;j<=r;j++)//枚举行的编号
ver[i]+=abs(ma[ch[j]][i]-ma[ch[j-]][i]);
for(int i=;i<=m;i++)//第i列
for(int j=i+;j<=m;j++)//第j列
for(int k=;k<=r;k++)//枚举行(注意循环的顺序)
del[i][j]+=abs(ma[ch[k]][j]-ma[ch[k]][i]);
for(int i=;i<=m;i++)
d[i][]=ver[i];
for(int i=;i<=m;i++)
for(int j=;j<=c;j++)
for(int k=;k<i&&i-k>=j-;k++)
d[i][j]=min(d[i][j],d[i-k][j-]+ver[i]+del[i-k][i]); for(int i=c;i<=m;i++)
ans=min(ans,d[i][c]);
}
void dfs(int x,int nr)//x,nr的含义与爆搜的含义相同
{ if(nr==r+)
{
dp();
return;
}
if(x>n)return ;
for(int i=x;i<=n;i++)
{
ch[nr]=i;
dfs(i+,nr+);
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&r,&c);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&ma[i][j]);
dfs(,);
printf("%d",ans);
}
P2258子矩阵的更多相关文章
- 洛谷 P2258 子矩阵 解题报告
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 ...
- 洛谷P2258 子矩阵
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...
- P2258 子矩阵(dp)
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...
- P2258 子矩阵——搜索+dp
P2258 子矩阵 二进制枚举套二进制枚举能过多一半的点: 我们只需要优化一下第二个二进制枚举的部分: 首先我们先枚举选哪几行,再预处理我们需要的差值,上下,左右: sum_shang,sum_hen ...
- P2258 子矩阵
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 222 . 444 行和第 222 ...
- 洛谷 P2258 子矩阵
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...
- luogu P2258 子矩阵 |动态规划
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉 ...
- 洛谷P2258 子矩阵[2017年5月计划 清北学堂51精英班Day1]
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...
- 洛谷P2258 子矩阵 题解 状态压缩/枚举/动态规划
作者:zifeiy 标签:状态压缩.枚举.动态规划 题目链接:https://www.luogu.org/problem/P2258 这道题目状态压缩是肯定的,我们需要用二进制来枚举状态. 江湖上有一 ...
随机推荐
- C# DropDownList绑定添加新数据的三种方法
一.在前台手动绑定 <asp:DropDownList ID="DropDownList1" runat="server"> <asp: ...
- dataTables使用的详细说明整理
本文共三个部分:官网|基本使用|遇到的问题 一.官方网站:http://www.datatables.club/ 二.基本使用: 1.dataTables的引入及初始化 <!--第一步:引入Ja ...
- python 安装成linux中的systemd守护运行
参考文档1:https://blog.csdn.net/luckytanggu/article/details/53467687 参考文档2:https://www.jianshu.com/p/e14 ...
- [Web 前端] 008 css 颜色表示方法
css 颜色表示法 颜色名表示 如 red 红色 green 绿色 blue 蓝色 16 进制数值表示 常见颜色 正常表示 缩写表示 红色 #ff0000 #f00 绿色 #00ff0 #0f0 蓝色 ...
- 将java项目转换成javaWeb项目
1.Ctrl+Shift+R快捷键:找到此项目中的.project文件,打开修改文件内容 在<natures> </natures>代码标签中,添加些内容: <natur ...
- 时间、金钱在java、数据库中的变量类型之总结
在编写程序时,总是有些变量的类型搞不很明白,现将目前涉及到的变量总结一下: 1.“时间”类型 (1).在数据库中的变量类型是:DateTime 比如: operateTime DATETIME,//数 ...
- Java-XML解析第一篇主流开源类库解析XML
1.流行的XML解析框架 1>底层解析方式:存在编码复杂性.难扩展.难复用.....想了解底层解析方式请参考:浅谈 Java XML 底层解析方式 2>Dom4j:基于 JAXP 解析方式 ...
- 五分钟搞懂 Linux 重点知识,傻瓜都能学会!
来源:无痴迷,不成功 www.cnblogs.com/justmine/p/9053419.html 写在前面 我们都知道Linux是一个支持多用户.多任务的系统,这也是它最优秀的特性,即可能同时有很 ...
- 错排问题 && 洛谷 P1595 信封问题
传送门 一道裸的错排问题 错排问题 百度百科上这样说 就是对于一个排列,每一个数都不在正确的位置上的方案数.n 个元素的错排数记为 D(n). 公式 D(n)=(n−1)∗(D(n−2)+D(n−1) ...
- 详解 vue 双向数据绑定的原理,并实现一组双向数据绑定
1:vue 双向数据绑定的原理: Object.defineProperty是ES5新增的一个API,其作用是给对象的属性增加更多的控制Object.defineProperty(obj, prop, ...