[CSP-S模拟测试]:赛(贪心+三分)
题目描述
由于出题人思维枯竭所以想不出好玩的背景。
有$n$个物品,第$i$个物品的价格是$v_i$,有两个人,每个人都喜欢$n$个物品中的一些物品。
要求选出正好$m$个物品,满足选出的物品中至少有$k$个物品被第一个人喜欢,$k$个物品被第二个人喜欢。并求出最小的价格和。
输入格式
第一行三个数$n,m,k$。
第二行$n$个数,第$i$个数表示$v_i$。
第三行包含一个数$a$,表示第一个人喜欢的物品数。
第四行包含$a$个数,表示第一个人喜欢的物品是哪几个。
第五行包含一个数$b$,表示第二个人喜欢的物品数。
第六行包含$b$个数,表示第二个人喜欢的物品是哪几个。
输出格式
一个数表示答案。若不存在合法的方案则输出$-1$。
样例
样例输入:
4 3 2
3 2 2 1
2
1 2
2
1 3
样例输出:
7
数据范围与提示
对于测试点$1\sim 4$:$n\leqslant 20$。
对于测试点$5\sim 10$:不存在一个物品被两个人喜欢。
对于测试点$11\sim 15$:$n\leqslant 2\times 10^3$。
对于测试点$16\sim 20$:无特殊限制。
对于所有的数据,$n\leqslant 2\times 10^5,m,k\leqslant n,v_i\leqslant 10^9$。
题解
这道题优秀的随机化可以拿到$95$分……
我们可以设两个人喜欢的物品交集个数为$r$,那么我们就可以贪心了。
发现答案满足单谷,于是我们可以三分。
其实三分也是存在漏洞的,因为一段的$r$可能对应一样的答案,但是显然随机数据没有卡。
时间复杂度:$\Theta(n\log k)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
int N,M,K,A,B;
int v[200001];
bool a[200001],b[200001];
int que[4][200001],top1,top2,top3,top4;
long long ans=1LL<<60;
bool cmp(int x,int y){return v[x]<v[y];}
long long judge(int x)
{
long long res=0;
for(int i=1;i<=x;i++)res+=v[que[3][i]];
for(int i=1;i<=K-x;i++){res+=v[que[1][i]];res+=v[que[2][i]];}
int lst=M-x-2*max(K-x,0);
int flag1=max(K-x,0)+1;
int flag2=max(K-x,0)+1;
int flag3=1;
while(lst)
{
if(v[que[1][flag1]]<=v[que[2][flag2]]&&v[que[1][flag1]]<=v[que[0][flag3]])
{
res+=v[que[1][flag1]];
flag1++;
}
else if(v[que[2][flag2]]<=v[que[1][flag1]]&&v[que[2][flag2]]<=v[que[0][flag3]])
{
res+=v[que[2][flag2]];
flag2++;
}
else
{
res+=v[que[0][flag3]];
flag3++;
}
lst--;
}
return res;
}
int main()
{
scanf("%d%d%d",&N,&M,&K);
for(int i=1;i<=N;i++)scanf("%d",&v[i]);
scanf("%d",&A);
for(int i=1;i<=A;i++)
{
int x;
scanf("%d",&x);
a[x]=1;
}
scanf("%d",&B);
for(int i=1;i<=B;i++)
{
int x;
scanf("%d",&x);
b[x]=1;
}
for(int i=1;i<=N;i++)
{
if(!a[i]&&!b[i])que[0][++top1]=i;
if( a[i]&&!b[i])que[1][++top2]=i;
if(!a[i]&& b[i])que[2][++top3]=i;
if( a[i]&& b[i])que[3][++top4]=i;
}
if(top2+top4<K||top3+top4<K||top4<max(2*K-M,0)||M<K||min(top4,K)+2*max(K-top4,0)>M){puts("-1");return 0;}
sort(que[0]+1,que[0]+top1+1,cmp);
sort(que[1]+1,que[1]+top2+1,cmp);
sort(que[2]+1,que[2]+top3+1,cmp);
sort(que[3]+1,que[3]+top4+1,cmp);
v[0]=0x3f3f3f3f;
int lft=max(K-min(top2,top3),max(2*K-M,0));
int rht=min(K,top4);
while(rht-lft>2)
{
int midl=lft+(rht-lft)/3;
int midr=rht-(rht-lft)/3;
if(judge(midl)<judge(midr))rht=midr;
else lft=midl;
}
ans=min(ans,judge(lft));
ans=min(ans,judge(lft+1));
ans=min(ans,judge(rht));
if(ans==(1LL<<60))puts("-1");
else printf("%lld",ans);
return 0;
}
rp++
[CSP-S模拟测试]:赛(贪心+三分)的更多相关文章
- [2018冬令营模拟测试赛(二十一)]Problem A: Decalcomania
[2018冬令营模拟测试赛(二十一)]Problem A: Decalcomania 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见&quo ...
- noi2019模拟测试赛(四十七)
noi2019模拟测试赛(四十七) T1与运算(and) 题意: 给你一个序列\(a_i\),定义\(f_i=a_1\&a_2\&\cdots\&a_i\),求这个序列的所 ...
- [CSP-S模拟测试]:C(三分+贪心)
题目传送门(内部题46) 输入格式 第一行$3$个整数$n,m,t$.第二行$n$个整数,表示$P_i$.接下来$m$行每行两个整数,表示$L_i,R_i$. 输出格式 一行一个整数表示答案. 样例 ...
- 2018.8.6 Noip2018模拟测试赛(十九)
日期: 八月六号 总分: 300分 难度: 提高 ~ 省选 得分: 10分(MMP) 题目目录: T1:Tree T2:异或运算 T3:Tree Restoring 赛后反思: Emmmmm ...
- 2018.7.31 Noip2018模拟测试赛(十六)
日期: 七月最后一天 总分: 300分 难度: 提高 ~ 省选 得分: 30分(少的可怜) 我太弱了:(题目目录) T1:Mushroom追妹纸 T2:抵制克苏恩 T3:美味 失分分析:(QA ...
- 2018.8.8 Noip2018模拟测试赛(二十一)
日期: 八月七号 总分: 300分 难度: 提高 ~ 省选 得分: 112分(OvO) 题目目录: T1:幸福的道路 T2:Solitaire T3:Flags 赛后心得: 第一题裸树d啊! ...
- 2018.8.7 Noip2018模拟测试赛(二十)
日期: 八月七号 总分: 300分 难度: 提高 ~ 省选 得分: 100分(呵呵一笑) 题目列表: T1:SS T2:Tree Game T3:二元运算 赛后反思: Emmmmmm…… 开 ...
- 2017.8.2 Noip2018模拟测试赛(十八)
日期: 八月二日 总分: 300分 难度: 提高 ~ 省选 得分: 40分(又炸蛋了!!) 题目列表: T1:分手是祝愿 T2:残缺的字符串 T3:树点涂色 赛后心得: 哎,T1求期望,放弃. ...
- 2017.8.1 Noip2018模拟测试赛(十七)
日期: 八月第一天 总分: 300分 难度: 提高 ~ 省选 得分: 100分(不应该啊!) 题目目录: T1:战争调度 T2:选数 T3:由乃的OJ 赛后心得: MMP,首先第一题花了大概 ...
随机推荐
- node+express 中安装nodemon实时更新server.js
每次启动node server.js,有一个缺点,每次server.js文件有改动时,必须重新执行指令node server.js,新的代码才会起作用 解决方案1 全局安装 npm install s ...
- Jmeter+ SeureCRT + Pinpoint
1.环境配置 [相关操作] 下载jdk http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.h ...
- layui中获取全部提交的数据
<form class="layui-form" action="">...........input textarea ......</fo ...
- JavaScript FSO属性大全
什么是FSO? FSO 即 File System Object 文件系统对象,是一种列表 Windows 磁盘目录和文件,对目录和文件进行删除.新建.复制.剪切.移动等操作的技术.使用 FSO 网站 ...
- 2019春第十一周作业Compile Summarize
这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 这里 我在这个课程的目标是 能按自己的想法解出题目 这个作业在那个具体方面帮助我实现目标 能朝着软件工程师方向发展 参考文献与网址 C语言 ...
- 如何选择适合自己的Linux版本
如何选择适合自己的Linux版本: 1.Linux桌面系统,首选Ubuntu; 2.服务器端的Linux系统,首选RHEL或CentOS,这两种中首选CentOS,如果公司有钱,不在乎成本也可以选择R ...
- [集合Set]HashSet、LinkedHashSet TreeSet
Set Set是不包含重复元素的集合.更正式地,集合不包含一对元素e1和e2,使得e1.equals(e2),并且最多一个空元素. 无索引,不可以重复,无序(存取不一致) Set接口除了继承自Coll ...
- HDU-1847 Good Luck in CET-4 Everybody! (博弈+找规律)
大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此.当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考 ...
- P3191 [HNOI2007]紧急疏散EVACUATE
传送门 这一题很容易想到网络流 一开始傻逼地模拟整个图每一个时间的情况,显然会爆炸 发现我们只要考虑起点到门之间的距离,不用每一步只走一格 所以直接 $BFS$ 预处理距离然后二分答案,网络流判断即可 ...
- C#如何在Socket传递负数,比如-51
1.关于计算机中的原码.反码和补码定义 1.原码 将最高位作为符号位(以0代表正,1代表负),其余各位代表数值本身的绝对值(以二进制表示).为了简单起见,我们用1个字节来表示一个整数. + ...