题目链接:HDU 1847

Problem Description

大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。

“升级”?“双扣”?“红五”?还是“斗地主”?

当然都不是!那多俗啊~

作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:

1、 总共n张牌;

2、 双方轮流抓牌;

3、 每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)

4、 抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;

假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?

当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。

Good luck in CET-4 everybody!

Input

输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。

Output

如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。

Sample Input

1
3

Sample Output

Kiki
Cici

Author

lcy

Source

ACM Short Term Exam_2007/12/13

Solution

题意

有 \(n\) 张牌,两个人轮流抓牌,每次可以取 \(2^i\) 张,最后取完的人获胜,求获胜者。

思路

所有的数要么是 \(3\) 的倍数,要么是 \(3\) 的倍数余 \(1\),要么是 \(3\) 的倍数余 \(2\)。

如果轮到对手时且只剩下 \(3\) 张牌,那么对手只能取 \(1\) 张或 \(2\) 张,对手必败。

如果轮到对手时且只剩下 \(3i\) 张牌,那么不管对手取几张,剩下的牌数为 \(3j + 1\) 或 \(3j + 2\),然后你只要取走余数,又构造一个 \(3\) 的倍数。

所以牌数为 \(3\) 的倍数时先手必败,否则先手必胜。

Code

#include <iostream>
using namespace std; int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
while(cin >> n) {
if(n % 3) {
cout << "Kiki" << endl;
} else {
cout << "Cici" << endl;
}
}
}

HDU 1847 Good Luck in CET-4 Everybody! (巴什博弈)的更多相关文章

  1. hdu 1847 Good Luck in CET-4 Everybody!(巴什博弈)

    Good Luck in CET-4 Everybody! HDU - 1847 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Ci ...

  2. HDU 1847 Good Luck in CET-4 Everybody! 四级好运!(博弈)

    思路:先用P/N状态来找规律. N状态:1 2 4 6 8 16 P状态:3 5 因为3=1+2, 无论拿1或者2皆输.看看5,只要抽掉2就变成了3,所以是N状态.看看6,可以抽掉1 2 4,若抽1, ...

  3. HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析)

    HDU.1847 Good Luck in CET-4 Everybody! ( 博弈论 SG分析) 题意分析 简单的SG分析 题意分析 简单的nim 博弈 博弈论快速入门 代码总览 //#inclu ...

  4. HDU 1847 Good Luck in CET-4 Everybody! (博弈)

    题意:不用说了吧,都是中文的. 析:虽说这是一个博弈的题,但是也很简单的,在说这个题目前我们先说一下巴什博弈定理. 巴什博弈定理:一堆物品有n个,有两个人(两个人足够聪明)轮流取,规定每次至少取一个, ...

  5. HD1847 Good Luck in CET-4 Everybody!(巴什博弈)

    巴什博弈: 一堆物品n个,最多取m个,最少取1个,最后取走的人获胜 分析:只要保证取玩最后剩m+1个,则必定胜利,所以构造m+1,只要n是 m+1的倍数,则先手必败,每次先手取玩,后手可取使得剩下的仍 ...

  6. HDU 1847 Good Luck in CET-4 Everybody!(规律,博弈)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. HDU 1847 Good Luck in CET-4 Everybody!(找规律,或者简单SG函数)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. HDU 1847 Good Luck in CET-4 Everybody! (博弈论sg)

    Good Luck in CET-4 Everybody! Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?或许紧张得连短学期的ACM都没工夫练习了.反正我知 ...

  9. HDU 1847 Good Luck in CET-4 Everybody!(找规律版巴什博奕)

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

随机推荐

  1. tfsenflow队列|tf.train.slice_input_producer|tf.train.Coordinator|tf.train.start_queue_runners

      #### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_pr ...

  2. Java并发AtomicReferenceArray类

    java.util.concurrent.atomic.AtomicReferenceArray类提供了可以原子读取和写入的底层引用数组的操作,并且还包含高级原子操作. AtomicReference ...

  3. spring cloud学习--eureka 01

    本博客为学习使用,学习教程翟永超 spring cloud 微服务实战 搭建eureka server注册中心 spring initialize构建spring boot项目 构建网址:https: ...

  4. 插件化框架解读之android系统服务实现原理(五)

    阿里P7移动互联网架构师进阶视频(每日更新中)免费学习请点击:https://space.bilibili.com/474380680 一.系统服务提供方式 1.我们平时最常见的系统服务使用方式 Wi ...

  5. C++中的类型转换函数

    1,转换构造函数可以将普通的基础类型转换为当前的类类型,也有能力将其它类类 型的对象转换为当前的类类型: 2,问题: 1,类类型是否能够类型转换到普通类型? 1,可以的: 3,类型转换函数: 1,C+ ...

  6. js 监听input 实现数据绑定

    <!DOCTYPE html> <html> <head> <script> function checkField(val) { //alert(&q ...

  7. css的9个常用选择器

    1.类选择器(通过类名进行选择) <!DOCTYPE html> <html> <head> <title></title> </he ...

  8. C#编程--第二天

    一.变量:变量先声明,后赋值,再使用. 语法:变量类型 变量名=值: 变量类型: 分为基本数据类型和引用类 基本数据类型:整型.浮点型.字符型.布尔型 引用类:字符串.日期时间.枚举类型.结构类型 i ...

  9. C#链式编程

    一.基本链式格式 class Program { static void Main(string[] args) { Console.WriteLine("Hello World!" ...

  10. 一、bootstrap-fontawesome-iconpicker组件

    一.bootstrap-fontawesome-iconpicker组件 <!DOCTYPE html> <html lang="en"> <head ...