ZOJ - 3780-Paint the Grid Again-(拓扑排序)
Description
Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or white).
Leo has a magical brush which can paint any row with black color, or any column with white color. Each time he uses the brush, the previous color of cells will be covered by the new color. Since the magic of the brush is limited, each row and each column can only be painted at most once. The cells were painted in some other color (neither black nor white) initially.
Please write a program to find out the way to paint the grid.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains an integer N (1 <= N <= 500). Then N lines follow. Each line contains a string with N characters. Each character is either 'X' (black) or 'O' (white) indicates the color of the cells should be painted to, after Leo finished his painting.
Output
For each test case, output "No solution" if it is impossible to find a way to paint the grid.
Otherwise, output the solution with minimum number of painting operations. Each operation is either "R#" (paint in a row) or "C#" (paint in a column), "#" is the index (1-based) of the row/column. Use exactly one space to separate each operation.
Among all possible solutions, you should choose the lexicographically smallest one. A solution X is lexicographically smaller than Y if there exists an integer k, the first k - 1 operations of X and Y are the same. The k-th operation of X is smaller than the k-th in Y. The operation in a column is always smaller than the operation in a row. If two operations have the same type, the one with smaller index of row/column is the lexicographically smaller one.
Sample Input
- 2
- 2
- XX
- OX
- 2
- XO
- OX
Sample Output
- R2 C1 R1
- No solution
- 题意:
- 在一张空白的图上有两个操作:
- ·Rx 将x行涂成黑色
- ·Cx 将x列涂成白色
- 每行每列只能进行一次操作。
- 给定一个目标的图形,问至少需要几次操作才能达到目标图形,输出路径
- 分析:
- 一开始就想到了用图论来解决
- 我首先想到了如何建图:
- 由于每个点最多会被涂两次(R一次,C一次)。
- 由于R和C涂的颜色是不一样的,我们可以根据这个点的目标颜色判断出对这个点的这两次操作的先后顺序。
- 由此可以按先后顺序建一条边。
- 我们的目的就是求出一条路径满足所有这些条件(即拓扑排序)
- 最后题目要求字典序最小的方案,由于列变换字符'C'的字典序比行变换'R'的字典序小,因此把列号设为1~n,行号设为n+1~2n,而且要求变换的行列坐标也要最小,因此用最小堆的优先队列来代替普通队列进行拓扑排序,
- 另外注意一点,起点(第一个入度为0的点)是不用涂的。因为起点在后面涂的时候一定会被覆盖
- 比如单一个点'X',拓扑序为第1列->第1行,但是显然刷第1列这个操作是多余的。
- 代码:
- #include<bits/stdc++.h>
- using namespace std;
- const int MAXN=1030;
- struct edge
- {
- int e;
- int nxt;
- edge():nxt(0){};
- edge(int e2,int nxt2):e(e2),nxt(nxt2){};
- }e[MAXN*MAXN];
- int head[MAXN];
- int tot;
- int deg[MAXN];
- int n;
- void add(int b,int ee)
- {
- e[tot]=edge(ee,head[b]);
- head[b]=tot++;
- }
- std::vector<int> res;
- int non[MAXN];
- bool topo()
- {
- priority_queue<int,vector<int>,greater<int> > q;
- for(int i=1;i<=2*n;i++){ //!注意是2*n
- if(deg[i]==0){
- q.push(i);
- //res.push_back(i);
- //cout<<"push "<<i<<endl;
- non[i]=1;
- }
- }
- int t;
- int now;
- while(!q.empty()){
- t=q.top();
- q.pop();
- res.push_back(t);
- for(int i=head[t];i!=0;i=e[i].nxt){
- now=e[i].e;
- deg[now]--;
- if(!deg[now]){
- q.push(now);
- }
- }
- }
- //cout<<"size "<<res.size()<<endl;
- return res.size()==n*2;//!注意是2*n
- }
- void init(){
- memset(head,0,sizeof(head));
- memset(deg,0,sizeof(deg));
- tot=1;
- res.clear();
- memset(non,0,sizeof(non));
- }
- int main()
- {
- //freopen("data.in","r",stdin);
- int t;
- scanf("%d",&t);
- char ch;
- while(t--){
- init();
- scanf("%d",&n);
- getchar();
- for(int i=1;i<=n;i++){
- for(int j=1;j<=n;j++){
- ch=getchar();
- if(ch=='X'){
- add(j,i+n);deg[i+n]++;
- }
- else{
- add(i+n,j);deg[j]++;
- }
- }
- getchar();
- }
- if(!topo()){
- printf("No solution\n");
- }
- else{
- int now=0;
- int len=res.size();
- for(int i=0;i<len;i++){
- now=res[i];
- if(non[now]) continue;
- else{
- printf("%c%d%c",now>n?'R':'C',now>n?now-n:now,i==len-1?'\n':' ');
- }
- }
- //printf("\n");
- }
- }
- }
ZOJ - 3780-Paint the Grid Again-(拓扑排序)的更多相关文章
- ZOJ 3780 Paint the Grid Again(隐式图拓扑排序)
Paint the Grid Again Time Limit: 2 Seconds Memory Limit: 65536 KB Leo has a grid with N × N cel ...
- 【ZOJ - 3780】 Paint the Grid Again (拓扑排序)
Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or ...
- ZOJ 3780 E - Paint the Grid Again 拓扑排序
https://vjudge.net/problem/49919/origin 题意:给你n*n只出现O和X的字符阵.有两种操作,一种操作Ri将i行全变成X,一种操作Ci将i列全变成O,每个不同的操作 ...
- ZOJ 3780 - Paint the Grid Again - [模拟][第11届浙江省赛E题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780 Time Limit: 2 Seconds Me ...
- ZOJ 3780 Paint the Grid Again
拓扑排序.2014浙江省赛题. 先看行: 如果这行没有黑色,那么这个行操作肯定不操作. 如果这行全是黑色,那么看每一列,如果列上有白色,那么这一列连一条边到这一行,代表这一列画完才画那一行 如果不全是 ...
- zjuoj 3780 Paint the Grid Again
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780 Paint the Grid Again Time Limit: 2 ...
- ZOJ 3781 Paint the Grid Reloaded(BFS+缩点思想)
Paint the Grid Reloaded Time Limit: 2 Seconds Memory Limit: 65536 KB Leo has a grid with N rows ...
- ZOJ 3781 Paint the Grid Reloaded(BFS)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Leo has a grid with N rows an ...
- ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds Me ...
随机推荐
- HDU 2018 Cow Story DP
Basic DP Problem URL:https://vjudge.net/problem/HDU-2018 Describe: There is a cow that gives birth t ...
- 生成ini文件
setProfileString是无法直接生成ini文件的,如果不存在这个ini文件需要先创建,然后再setProfileString.示例代码//保存连接参数到配置文件if not FileExis ...
- Codeforces 1221D. Make The Fence Great Again
传送门 容易想到 $dp$,但是如果直接设 $f[i][j]$ 表示修正完前 $i$ 个位置,第 $i$ 个位置增加了 $j$ 高度显然是不行的 考虑有性质,发现每个位置只会被左右两个位置影响而改变, ...
- Redis安全策略
1. 开启redis密码认证,并设置高复杂度密码 描述 redis在redis.conf配置文件中,设置配置项requirepass, 开户密码认证. redis因查询效率高,auth这种命令每秒能处 ...
- tomcat启动报ClassNotFound
排除本来就缺少该类的原因,经过自己经验和网上查的资料,解决方式如下: jar包冲突(关闭其他项目) eclipse的java版本不对,点击项目,右键properties在project facets, ...
- MySQL 下载与安装
从MySQL官网下载安装文件,我的电脑是window10 64位的,下载社区版本,选择mysql community server,再下载64位的. 官网链接:https://www.mysql.co ...
- 通过Nginx对CC攻击限流
最近公司部署到阿里金融云的系统遭受CC攻击,网络访问安全控制仅靠阿里云防火墙保障,在接入层及应用层并未做限流. 攻击者拥有大量的IP代理,只要合理控制每个IP的请求速率(以不触发防火墙拦截为限),仍给 ...
- Nginx的快速安装
1. 准备工作 1. CenterOS7.x.vmware虚拟机,安装过程参考 https://jingyan.baidu.com/article/eae0782787b4c01fec548535.h ...
- init container
init container与应用容器在本质上是一样的, 但它们是仅运行一次就结束的任务, 并且必须在成功执行完成后, 系统才能继续执行下一个容器, 可以用在例如应用容器启动前做一些初始化工作,当in ...
- 记录一下RAC的使用
1 常规的对数组的操作,包括遍历.刷选.映射.替换 // 遍历 NSArray * array = @["]; [array.rac_sequence.signal subscribeNe ...