Description

Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or white).

Leo has a magical brush which can paint any row with black color, or any column with white color. Each time he uses the brush, the previous color of cells will be covered by the new color. Since the magic of the brush is limited, each row and each column can only be painted at most once. The cells were painted in some other color (neither black nor white) initially.

Please write a program to find out the way to paint the grid.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 500). Then N lines follow. Each line contains a string with N characters. Each character is either 'X' (black) or 'O' (white) indicates the color of the cells should be painted to, after Leo finished his painting.

Output

For each test case, output "No solution" if it is impossible to find a way to paint the grid.

Otherwise, output the solution with minimum number of painting operations. Each operation is either "R#" (paint in a row) or "C#" (paint in a column), "#" is the index (1-based) of the row/column. Use exactly one space to separate each operation.

Among all possible solutions, you should choose the lexicographically smallest one. A solution X is lexicographically smaller than Y if there exists an integer k, the first k - 1 operations of X and Y are the same. The k-th operation of X is smaller than the k-th in Y. The operation in a column is always smaller than the operation in a row. If two operations have the same type, the one with smaller index of row/column is the lexicographically smaller one.

Sample Input

2
2
XX
OX
2
XO
OX

Sample Output

R2 C1 R1
No solution
 
题意:
在一张空白的图上有两个操作:
·Rx  将x行涂成黑色
·Cx  将x列涂成白色
每行每列只能进行一次操作。
给定一个目标的图形,问至少需要几次操作才能达到目标图形,输出路径
分析:
一开始就想到了用图论来解决
我首先想到了如何建图:
由于每个点最多会被涂两次(R一次,C一次)。
由于R和C涂的颜色是不一样的,我们可以根据这个点的目标颜色判断出对这个点的这两次操作的先后顺序。
由此可以按先后顺序建一条边。
我们的目的就是求出一条路径满足所有这些条件(即拓扑排序)
最后题目要求字典序最小的方案,由于列变换字符'C'的字典序比行变换'R'的字典序小,因此把列号设为1~n,行号设为n+1~2n,而且要求变换的行列坐标也要最小,因此用最小堆的优先队列来代替普通队列进行拓扑排序,
另外注意一点,起点(第一个入度为0的点)是不用涂的。因为起点在后面涂的时候一定会被覆盖
比如单一个点'X',拓扑序为第1列->第1行,但是显然刷第1列这个操作是多余的。
代码:
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1030;
struct edge
{
int e;
int nxt;
edge():nxt(0){};
edge(int e2,int nxt2):e(e2),nxt(nxt2){};
}e[MAXN*MAXN];
int head[MAXN];
int tot;
int deg[MAXN];
int n;
void add(int b,int ee)
{
e[tot]=edge(ee,head[b]);
head[b]=tot++;
}
std::vector<int> res;
int non[MAXN];
bool topo()
{
priority_queue<int,vector<int>,greater<int> > q;
for(int i=1;i<=2*n;i++){ //!注意是2*n
if(deg[i]==0){
q.push(i);
//res.push_back(i);
//cout<<"push "<<i<<endl;
non[i]=1;
}
}
int t;
int now;
while(!q.empty()){
t=q.top();
q.pop();
res.push_back(t);
for(int i=head[t];i!=0;i=e[i].nxt){
now=e[i].e;
deg[now]--;
if(!deg[now]){
q.push(now);
}
}
}
//cout<<"size "<<res.size()<<endl;
return res.size()==n*2;//!注意是2*n
}
void init(){
memset(head,0,sizeof(head));
memset(deg,0,sizeof(deg));
tot=1;
res.clear();
memset(non,0,sizeof(non));
}
int main()
{
//freopen("data.in","r",stdin);
int t;
scanf("%d",&t);
char ch;
while(t--){
init();
scanf("%d",&n);
getchar();
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
ch=getchar();
if(ch=='X'){
add(j,i+n);deg[i+n]++;
}
else{
add(i+n,j);deg[j]++;
}
}
getchar();
}
if(!topo()){
printf("No solution\n");
}
else{
int now=0;
int len=res.size();
for(int i=0;i<len;i++){
now=res[i];
if(non[now]) continue;
else{
printf("%c%d%c",now>n?'R':'C',now>n?now-n:now,i==len-1?'\n':' ');
}
}
//printf("\n");
}
}
}

ZOJ - 3780-Paint the Grid Again-(拓扑排序)的更多相关文章

  1. ZOJ 3780 Paint the Grid Again(隐式图拓扑排序)

    Paint the Grid Again Time Limit: 2 Seconds      Memory Limit: 65536 KB Leo has a grid with N × N cel ...

  2. 【ZOJ - 3780】 Paint the Grid Again (拓扑排序)

    Leo has a grid with N × N cells. He wants to paint each cell with a specific color (either black or ...

  3. ZOJ 3780 E - Paint the Grid Again 拓扑排序

    https://vjudge.net/problem/49919/origin 题意:给你n*n只出现O和X的字符阵.有两种操作,一种操作Ri将i行全变成X,一种操作Ci将i列全变成O,每个不同的操作 ...

  4. ZOJ 3780 - Paint the Grid Again - [模拟][第11届浙江省赛E题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780 Time Limit: 2 Seconds      Me ...

  5. ZOJ 3780 Paint the Grid Again

    拓扑排序.2014浙江省赛题. 先看行: 如果这行没有黑色,那么这个行操作肯定不操作. 如果这行全是黑色,那么看每一列,如果列上有白色,那么这一列连一条边到这一行,代表这一列画完才画那一行 如果不全是 ...

  6. zjuoj 3780 Paint the Grid Again

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780 Paint the Grid Again Time Limit: 2 ...

  7. ZOJ 3781 Paint the Grid Reloaded(BFS+缩点思想)

    Paint the Grid Reloaded Time Limit: 2 Seconds      Memory Limit: 65536 KB Leo has a grid with N rows ...

  8. ZOJ 3781 Paint the Grid Reloaded(BFS)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Leo has a grid with N rows an ...

  9. ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds      Me ...

随机推荐

  1. rabbitmq五种消息模型整理

    目录 0. 配置项目 1. 基本消息模型 1.1 生产者发送消息 1.2 消费者获取消息(自动ACK) 1.3 消息确认机制(ACK) 1.4 消费者获取消息(手动ACK) 1.5 自动ACK存在的问 ...

  2. Java Lock的使用

    + ReentrantLock类的使用 + ReentrantReadWriteLock类的使用 1. 使用ReentrantLock类 ReentrantLock类能够实现线程之间同步互斥,并且在扩 ...

  3. 右键添加cmd notePad++快捷键

    1.将以下文字复制到txt文本,将txt修改为reg执行后,邮件菜单查. Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\Directo ...

  4. SSM和Spring Boot常用配置比较

    一.Dao层相关 1.Mysql相关: 1.1配置DataSource连接池: (1)SSM配置: <!-- 加密后配置自己写的解析文件 --> <bean class=" ...

  5. Charles学习(二)之使用Map local代理本地静态资源以及配置网页代理在Mac浏览器上调试移动端

    前言 我们在开发的过程肯定是一边写代码,一边查看自己的代码写的是否存在问题,那么问题来了,有两种情况 情况一:我们可以本地起服务,那么我们就可以在本地检查自己的代码,查看运行结果 情况二:本地无法起服 ...

  6. [转载]MySQL的存储引擎

    [转载]MySQL的存储引擎 来源:https://www.cnblogs.com/lina1006/archive/2011/04/29/2032894.html 其实这是个只有在MySQL中才存在 ...

  7. luogu P4006 小 Y 和二叉树

    luogu loj 可以发现度数\(< 3\)的点可以作为先序遍历的第一个点,那么就把度数\(< 3\)的编号最小的点作为第一个点.然后现在要确定它的左右儿子(或者是右儿子和父亲).我们把 ...

  8. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  9. nested exception is org.apache.ibatis.reflection.ReflectionException: There is no getter for property named 'enterpriseId' in 'class java.lang.String'

    错误信息: nested exception is org.apache.ibatis.reflection.ReflectionException: There is no getter for p ...

  10. openstack mitaka开启三层网络vxlan

    在这之前,先把之前基于flat模式创建的虚机,全部删除 控制节点: 配置 修改/etc/neutron/neutron.conf的[DEFAULT]区域 将 core_plugin = ml2 ser ...