1085 背包问题 

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题

 收藏

 关注

在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包能够容纳的最大价值。

Input

第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000)
第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)

Output

输出可以容纳的最大价值。

Input示例

3 6
2 5
3 8
4 9

Output示例

14
#include<bits/stdc++.h>
#include<stdio.h>
#include<iostream>
#include<cmath>
#include<math.h>
#include<queue>
#include<set>
#include<map>
#include<iomanip>
#include<algorithm>
#include<stack>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
int n,W;
int w[105];
int p[105];
int dp[10005];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLIN
scanf("%d%d",&n,&W);
for(int i=1;i<=n;i++)scanf("%d%d",&w[i],&p[i]);
for(int i=1;i<=n;i++)
{
for(int j=W;j>=0;j--)//为了防止一个物品被放入多次,须逆序进行
{
if(j>=w[i])
dp[j]=max(dp[j],dp[j-w[i]]+p[i]);
}
}
printf("%d\n",dp[W]);
return 0;
}

51 Nod 1085 01背包问题的更多相关文章

  1. 51 nod 1109 01组成的N的倍数

    1109 01组成的N的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给定一个自然数N,找出一个M,使得M > 0且M是N的倍数,并且 ...

  2. 51 Nod 1086 多重背包问题(单调队列优化)

    1086 背包问题 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 有N种物品,每种物品的数量为C1,C2......Cn.从中任选若干件放 ...

  3. 51 Nod 1086 多重背包问题(二进制优化)

    1086 背包问题 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 有N种物品,每种物品的数量为C1,C2......Cn.从中任选若干件放 ...

  4. 01背包问题:POJ3624

    背包问题是动态规划中的经典问题,而01背包问题是最基本的背包问题,也是最需要深刻理解的,否则何谈复杂的背包问题. POJ3624是一道纯粹的01背包问题,在此,加入新的要求:输出放入物品的方案. 我们 ...

  5. 01背包问题:Charm Bracelet (POJ 3624)(外加一个常数的优化)

    Charm Bracelet    POJ 3624 就是一道典型的01背包问题: #include<iostream> #include<stdio.h> #include& ...

  6. HDU 1864最大报销额 01背包问题

    B - 最大报销额 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  7. HDOJ 2546饭卡(01背包问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=2546 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如 ...

  8. YTU 2335: 0-1背包问题

    2335: 0-1背包问题 时间限制: 1 Sec  内存限制: 128 MB 提交: 15  解决: 12 题目描述 试设计一个用回溯法搜索子集空间树的函数.该函数的参数包括结点可行性判定函数和上界 ...

  9. c语言数据结构:01背包问题-------动态规划

    两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...

随机推荐

  1. Ubuntu19.04系统SSH连接CentOS7虚拟机

    一.为CentOS7配置静态IP 注意查看宿主机(Ubuntu19.04)所在局域网段,当前为172.18.25.108 修改当前系统下virtual box的网络设置 [控制]-->[设置]- ...

  2. 【计算机网络】-介质访问控制子层-无线LAN

    [计算机网络]-介质访问控制子层-无线LAN 802.11体系结构和协议栈 802.11网络使用模式: 有架构模式(Infrastructure mode) 无线客户端连接接入点AP,叫做有架构模式 ...

  3. HDU 3416 Marriage Match IV (最短路建图+最大流)

    (点击此处查看原题) 题目分析 题意:给出一个有n个结点,m条单向边的有向图,问从源点s到汇点t的不重合的最短路有多少条,所谓不重复,意思是任意两条最短路径都不共用一条边,而且任意两点之间的边只会用一 ...

  4. C++练习 | 模板与泛式编程练习(2)

    #include <iostream> #include <cmath> #include <cstring> #include <string> #i ...

  5. 学习python基础规则

    前面应该是记流水账的方式,毕竟学习的内容不多无法产出什么有效的内容. 这两天从开始下载Python开始学习,一路顺畅冒的问题,直到开始学习python的游戏规则,严格缩进.注释及‘’的使用等感觉还不错 ...

  6. Ruby初见

    一. 简介 Ruby,一种简单快捷的面向对象(面向对象程序设计)脚本语言,在20世纪90年代由日本人松本行弘(Yukihiro Matsumoto)开发,遵守GPL协议和Ruby License. 二 ...

  7. Linux服务器Java进程突然消失排查办法

    出处:JAVA进程突然消失的原因? 问题描述 在实际生产环境下,如果我们遇见Java进程突然消失,该如何去排查问题? 思路 可能有几种原因: ①.Java应用程序的问题:发生OOM导致进程Crash ...

  8. Docker 容器简介与部署

    关于Docker容器技术 参考文献:<docker 从入门到精通> Docker容器简介 Docker的构想是要实现 "Build,Ship and Run Any App,An ...

  9. Codeforces 1194E. Count The Rectangles

    传送门 看到 $n<=5000$,直接暴力枚举左右两条竖线 然后考虑怎么计算高度在某个范围内,左端点小于等于某个值,右端点大于等于某个值的横线数量 直接用权值树状数组维护当前高度在某个区间内的横 ...

  10. Spring Cloud Alibaba nacos 配置中心使用

    背景 上一文我们讲到了如何去搭建注册中心,这一次我们讲述如何使用nacos作为注册中心 spring-cloud-alibaba-basis 创建基础依赖 首先我们创建一个spring-cloud-a ...