Discrete Logging
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3696   Accepted: 1727

Description

Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

    B

L

 == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

Sample Input

5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

Hint

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions.
It is Fermat's theorem that states 
   
         B^(p-1) == 1 (mod p )

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

       
        B^(-m) == B^(p-1-m) (mod p )

题意要求解一个   k^D = n ( mod p )  的一个最小D

一开始也不会解 。

在网上看了一下,原来是用到一个 Baby step giant step 的算法 。

先要把 D 分解 ,  D = i * m + j  (  m = ceil( sqrt (p - 1  ) ) )

原式   :  k^D = n ( mod p )

->   k^i^m * k^j   = n (mod p )

->   k^j = n * ( k ^(-m)^ i ) ( mod p )

根据题目给的 Hint ( 费马小定理 )可以求出 k^m 的逆元 .

然后枚举 i  , 查找是否存在 k^j 与 n * ( k ^(-m)^i ) 相等

所以预处理 k^j (  mod p  ) 排序以后 , 就可以进行二分查找了 (复杂度降为log(m))。

加上枚举 , 那么总复杂度就是 m*log(m) .

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL ;
const int N = ; struct B
{
LL num , id ;
bool operator < ( const B &a ) const{
if( num != a.num ) return num < a.num;
else return id < a.id ;
}
}baby[N]; LL n , k , p ;
int tot ; LL quick_mod( LL a , LL b ,LL mod )
{
LL res = ;
while( b )
{
if( b & ) res = res * a % mod ;
a = a * a % mod ;
b >>= ;
}
return res ;
}
int find( LL n )
{
int l = , r = tot - ;
while( l <= r ){
int m = (l + r) >> ;
if( baby[m].num == n){
return baby[m].id;
}
else if( baby[m].num < n )
l = m + ;
else
r = m - ;
}
return -;
}
void run()
{
int m = (int)ceil(sqrt((double)(p-)));
baby[].num = , baby[].id = ;
for( int i = ; i < m ; ++i ){
baby[i].id = i ;
baby[i].num = baby[i-].num * k % p ; // k^j
}
sort( baby , baby + m );
tot = ;
for( int i = ; i < m ; ++i ){
if( baby[tot-].num != baby[i].num ) baby[tot++] = baby[i];
} LL bm = quick_mod( k , p - - m , p ) ; // k^(-m) ;
LL temp = n ; for( int j = ; j < m ; ++j ){
// k^(-m)^j
int pos = find( temp );
if( pos != - ){
printf("%d\n" , ( m * j + pos ) );
return ;
}
temp = temp * bm % p ;
}
puts("no solution");
}
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
while( ~scanf("%lld%lld%lld",&p,&k,&n) ) run();
}

POJ 2417 Discrete Logging ( Baby step giant step )的更多相关文章

  1. BSGS算法+逆元 POJ 2417 Discrete Logging

    POJ 2417 Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4860   Accept ...

  2. POJ 2417 Discrete Logging 离散对数

    链接:http://poj.org/problem?id=2417 题意: 思路:求离散对数,Baby Step Giant Step算法基本应用. 下面转载自:AekdyCoin [普通Baby S ...

  3. POJ 2417 Discrete Logging BSGS

    http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % ...

  4. POJ - 2417 Discrete Logging(Baby-Step Giant-Step)

    d. 式子B^L=N(mod P),给出B.N.P,求最小的L. s.下面解法是设的im-j,而不是im+j. 设im+j的话,貌似要求逆元什么鬼 c. /* POJ 2417,3243 baby s ...

  5. poj 2417 Discrete Logging ---高次同余第一种类型。babystep_gaint_step

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2831   Accepted: 1391 ...

  6. POJ 2417 Discrete Logging (Baby-Step Giant-Step)

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2819   Accepted: 1386 ...

  7. poj 2417 Discrete Logging(A^x=B(mod c),普通baby_step)

    http://poj.org/problem?id=2417 A^x = B(mod C),已知A,B.C.求x. 这里C是素数,能够用普通的baby_step. 在寻找最小的x的过程中,将x设为i* ...

  8. POJ 2417 Discrete Logging(离散对数-小步大步算法)

    Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 ...

  9. POJ 2417 Discrete Logging

    http://www.cnblogs.com/jianglangcaijin/archive/2013/04/26/3045795.html 给p,a,b求a^n==b%p #include<a ...

随机推荐

  1. elasticsearch 基础 —— 处理冲突及乐观并发控制

    处理冲突 当我们使用 index API 更新文档 ,可以一次性读取原始文档,做我们的修改,然后重新索引 整个文档 . 最近的索引请求将获胜:无论最后哪一个文档被索引,都将被唯一存储在 Elastic ...

  2. Kotlin 匿名内部类对象引用当前Activity的this用法

    一,Kotlin中匿名内部类,引用Activity的this用法为 this@MainActivity (对应自己的Activity),还是上代码吧 class Main17Activity : Ap ...

  3. python实战-有道翻译

    #导入urllib包里的request请求模块import urllib.request#导入urllib包里的解析模块 import urllib.parse import json content ...

  4. ForkJoinPool线程池--分支执行

    import java.util.ArrayList; import java.util.concurrent.ExecutionException; import java.util.concurr ...

  5. network ---边赋予权重

    有向图和无向图都可以给边赋予权重,用到的方法是add_weighted_edges_from,它接受1个或多个三元组[u,v,w]作为参数,其中u是起点,v是终点,w是权重.例如: G.add_wei ...

  6. android android studio error

    SIMPLE: Error computing //cmake 包含的跨平台头文件或者是源文件路径出错

  7. springmvc 的 @PathVariable

    @PathVariable映射 URL 绑定的占位符 通过 @PathVariable 可以将 URL 中占位符参数绑定到控 •制器处理方法的入参中:URL 中的 {xxx} 占位符可以通过@Path ...

  8. Vue-Router原理

    Hash 与 History 路由原理 实现路由 /** * 1.前端路由与后端路由的区别 后端路由: 输入url => 请求发送到服务器 => 服务器解析请求路径 => 拿到对应页 ...

  9. git私立的代码库邀请合作者步骤

    第一步,点击setting,如下图: 第二步输入对方的用户名,点击添加. 第三步拷贝链接给对方,等待对方访问加入. 对方访问后可以看到: 加入就可以了 然后对方可以看到:

  10. PHP远程DoS漏洞深入分析及防护方案

    PHP远程DoS漏洞 4月3日,有人在PHP官网提交PHP 远程DoS漏洞(PHP Multipart/form-data remote dos Vulnerability),代号69364.由于该漏 ...