ZROI 19.08.03 DP入门
- \(n\)个点,要求连一棵树,设点\(i\)的度数为\(d_i\),则其贡献为\(f(d_i)\mod 59393\),其中\(f(x)\)是一个\(k\)次多项式。最大化总贡献。\(n\leq 3000, k\leq 10, a_i\leq 50\)。
对于任意一种度数序列,都可以生成一棵对应的树。
每个点度数\(\geq 1\),\(-1\)后等于\(n\)个点分\(n-2\)个度数。
\(O(n^3)\)dp:\(f_{i,j}\)表示前\(i\)个点,度数和为\(j\)的最优解,转移的时候枚举新点度数。
实际上不需要限制非\(0\)数的个数,直接枚举度数做完全背包,\(O(n^2)\)。
dp时很多状态是非必要的,通过一些转化,去掉它们就可以优化很多。
(顺便一提,模数是ntt模数,然而这题和ntt没什么关系)
\(f_{i,j}\)表示第\(i\)个单位,血量为\(j\)的概率。
询问的时候对每个单位算出\(g_{i,j}\),表示除了第\(i\)个单位之外,有\(j\)个单位存活的概率。先把所有单位的背包算出来,每个单位的\(g_i\)相当于退一个背包,用除一个\(ax+b\)的方法,可以做到单次\(O(n^2)\)。
复杂度\(O(nm+n^2C)\)。
- 一个\(n\)个点的图,求\(k\)个叶子的生成树个数。\(n\leq 15\)。
一种dp:设\(f_{\{a_1.…,a_n\}},a_i=\{0,1,2\}\),表示每个点没选/选了,是/不是叶子的方案数。
然后这个dp被ytq枪毙了。
考虑容斥,枚举叶子集合,剩下的点Matrix-Tree求出生成树个数,然后把叶子挂在生成树下面。用fmt/fwt优化容斥,复杂度\(O(3^n)\)。
- 有\(\{2…n\}\),共\(n-1\)个数。两个人各取一个子集\(S,T\),要求不存在\(x\in S,y\in T\),使得\(\gcd(x,y)\not=1\),求方案数。\(n\leq 500\)。
\(x^2\leq 500\)的质数最多\(8\)个。
意味着对于一个数,不属于这些质数的质因子最多一个。
枚举\(8\)个质因数中每个属于\(S,T\),还是都不属于。dp大质数各自属于哪个集合即可。复杂度\(O(3^8\cdot n)\)。
- \(n\times m\)的网格,每个位置有权值。选若干个位置,满足任意两个位置八方向不连通,求最大权值。\(n\leq 12,m \leq 100\)。
插头dp经典问题。
- \(n\)个点的有根森林,两个人轮流选点,删去这个点的祖先和它本身,保留其余点的父子关系(即,可能生成若干棵树)。不能操作者输,求先手是否必胜。\(n\leq 10^5\)。
设\(f_i\)表示以\(i\)为根的子树的sg函数,对每个点暴力dfs,\(O(n^2)\)暴力很好做。
发现一个儿子转移到父亲,它的子问题的sg函数,需要整体xor上一个值,用trie维护,直接线段树合并就可以了(\(01\)trie的本质就是一个二进制分组的权值线段树)。
- 平面上有\(2n\)个球,有\(2n\)个机器人,分别位于横、纵轴\([1,n]\)的位置。激活一个机器人会拿走它坐标轴垂直方向最近的球。问多少顺序可以拿走所有球。\(n\leq 10^5\)。
建\(2n\)个点分别表示第\(i\)行和第\(i\)列。对于\((x,y)\)的球,从\(x\)行向\(y\)列连边,边权为\(x+y\)。每次激活一个点,等于选了与它相连的剩余权值最小的边。
考虑合法的方案,要求每个连通块边数等于点数,且每个点出度为\(1\)。发现是一个基环内向树。
环上枚举顺时针或逆时针,树上可以直接树dp。
- 数轴上有\(n\)个点,第\(i\)个的位置是\(x_i\)。你的起点是\(0\),终点是\(E\),速度是\(1\)单位每秒。对于每个点,设第一次走上去的时间为\(t_i\),则会在\(t_i+T\)时刻产生一个硬币。求收集所有硬币并走到终点的最小时间。\(n\leq 10^5,0 < x_i < E\)。
设\(f_{i}\)表示最后一次在\(x_i\)处回头的最小时间,列出暴力方程:
\[f_i=\max_{j<i}\{f_j+x_i-x_j+\max(2(x_i-x_j),T)\}\]
取\(\max\)表示路程太短没法生成硬币,需要等一会。
拆成两部分dp,对于\(\max=T\)的一部分,可以单调队列优化。否则就是一个前缀最小值。可以线性完成。好水啊
- 给一个序列\(a_i\),对每个\(i\)找一个最小的\(p_i\),满足对所有\(j\)有\(p_i\geq a_j-a_i+\sqrt{|i-j|}\)。\(n\leq 10^6\)。
有个比较显然的\(O(n\sqrt n)\)做法,即枚举平方根,对每个平方根用单调队列优化。
四边形不等式:若\(w_{i,j}\)满足内内+外外\(\geq\)内外+外内,则称\(w_{i,j}\)满足四边形不等式,利用\(w_{i,j}\)转移的方程满足决策单调性。
利用决策单调性优化方程需要快速算出\(w_{i,j}\),或\(w_{i,j}\)满足莫队性质。
一般情况下是分治计算,即,暴力算出\(mid\)处的最优位置,然后递归两边。
暴力做法:枚举中位数\(\mu\),每条边拆成\(a_i,2\mu-a_i\)两条边,分别为黑和白。就转化为了\(k\)白边最小生成树,wqs二分即可。复杂度\(O(nm\log a\cdot \alpha(n))\)。
结论:最大生成树只包含\(w\geq \mu\)的黑边和\(w<\mu\)的白边。
发现枚举\(\mu\)的操作只对白边有影响,可以和wqs二分放到一起,复杂度\(O(m\log a\cdot \alpha(n))\)。
- 有一个二进制串,初始全是\(0\)。现在有\(m\)次操作,每次操作有\(p_i\)的概率给这个串加上\(2^{a_i}\),一次操作的代价是这次操作导致二进制串变化的位数,求所有操作的期望代价和。\(a_i,m\leq 2\times 10^5\)。
答案等于所有过程进位次数加上最后保留的\(1\)的个数,所以操作顺序对答案没有影响。
\(f_{i,j}\)表示前\(i\)位,这一位被加了\(j\)次的期望,则\(f_{i,j}\)可以转移到\(f_{i+1,\lfloor\frac{j}{2}\rfloor}\)。
操作等于乘以一个\(p_ix+(1-p_i)\)的多项式,可以分治fft。
假设某个位置操作了\(y\)次,则它最多进位\(\log_2y\)次,相当于每个多项式最多前进\(\log\)步。只需要处理有用的部分即可。复杂度\(O(n\log^2n)\)。
ZROI 19.08.03 DP入门的更多相关文章
- ZROI 19.08.03 分治与离线
经典问题,给一张图,支持加边/删边/询问两点连通性. 离线统计边权(删除时间),lct维护最大生成树即可. 也可以按时间分治,维护一个可回退并查集即可. 主定理 很好用,但是记不住. 有一种简明的替代 ...
- ZROI 19.08.12模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "我发现问题的根源是大家都不会前缀和."--敦爷 A 敦爷spj写错了,差点把蒟蒻swk送走 \(50pts:\) ...
- ZROI 19.08.11模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. dlstql,wsl A \(10pts:\) \(a=100,T=100\),对每个排列构造一个反的,一步到位即可. \(20pts ...
- ZROI 19.08.10模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(20pts:\) 枚举操作序列然后暴力跑,复杂度\(O(6^n)\). \([50,80]pts:\) 枚举改成dfs,每层操 ...
- ZROI 19.08.05模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(21pts:\) 随便枚举,随便爆搜就好了. \(65pts:\) 比较显然的dp,设\(f_{i,j,k}\)表示在子树\( ...
- ZROI 19.08.02 杂题选讲
给出\(n\)个数,用最少的\(2^k\)或\(-2^{k}\),使得能拼出所有数,输出方案.\(n,|a_i|\leq 10^5\). 显然一个绝对值最多选一次.这个性质非常强. 如果所有都是偶数, ...
- ZROI 19.08.01 树上数据结构
1.总览 LCT 链分治(树剖) 点/边分治 2.点分治 一棵树,点有\(0/1\),多次修改,询问最远的两个\(1\)距离. 建出点分树,每个子树用堆维护:①最远的\(1\)距离:②它的每个儿子的① ...
- ZROI 19.08.01 生成函数方法
写在前面:由于我数学基础不好,加上缺乏生成函数知识,所以这一下午我都处在掉线和非掉线的叠加态.而且我写\(\LaTeX\)很慢,所以笔记相当混乱而且不全面.说白了就是我太菜了听不懂. 1.一般生成函数 ...
- ZROI 19.08.09模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(70pts:\) 维护一个栈,从一侧向另一侧扫描,如果新加入的元素与当前栈顶相同,则出栈,否则进栈.显然一个子串是括号序列,当 ...
随机推荐
- ping命令介绍
1.ping是TCP/IP协议的一部分,所以只要安装了TCP/IP协议就(无论windows或linux)都可以使用ping命令. 2.ping命令的原理:本机创建一个数据包发送给(ping对象)目标 ...
- Web09_MySQL多表&JDBC
使用JDBC发送insert语句完成单表[添加]操作 使用JDBC发送update语句完成单表[更新]操作 使用JDBC发送delete语句完成单表[删除]操作 使用JDBC发送select语句完成单 ...
- delphi TDbGrid 右键 PopupMenu 菜单只在有数据的地方弹出
最近用delphi做开发,用到了DbGrid控件,想在控件上点击鼠标右键弹出菜单 关联DbGrid的 Popupmenu 倒是可以实现,但是这样的效果是不管你在哪里单击鼠标右键 只要在DBGrid里面 ...
- 关系/对象映射 多对多关系(@ManyToMany 注释)【重新认识】
old: @ManyToMany 注释:表示此类是多对多关系的一边, mappedBy 属性定义了此类为双向关系的维护端, 注意:mappedBy 属性的值为此关系的另一端的属性名. 例如,在Stud ...
- unieap 建库
create tablespace unieap datafile 'unieap.dbf' size 100M reuse autoextend on next 50M;1. 2.drop user ...
- Sublime Text 3 相关
Sublime Text 3 相关 Sublime Text 3是款非常实用代码编辑神器,但是想要用任何一款软件,掌握一些快捷键还是很有必要的.. 将Sublime Text 3 添加到右键选项中 打 ...
- javase程序设计上机作业2
package javaxgp.teacher.test; import java.util.Scanner; public class Demo3 { public static void main ...
- codeblocks无法识别的16位程序解决方法
被codeblocks心态搞崩了,分享一下经验给大家,具体就是无法运行编译好的程序,还有就是调试功能没法用. 查了很多资料,自己搞了一个终极解决方法:1卸载codeblocks,2打开我的电脑,全盘搜 ...
- 完全分布式部署Hadoop
完全分布式部署 Hadoop 分析: 1)准备 3 台客户机(关闭防火墙.静态 ip.主机名称) 2)安装 jdk 3)配置环境变量 4)安装 hadoop 5)配置环境变量 6)安装 ssh 7)配 ...
- php连接mysql,数据CRUD操作
插入数据 <?php $name = $_GET['username']; $sex = $_GET['sex']; $hobby = $_GET['hobby']; $address = $_ ...