「NOI2016」区间 解题报告
「NOI2016」区间
最近思维好僵硬啊...
一上来就觉得先把区间拆成两个端点进行差分,然后扫描位置序列,在每个位置维护答案,用数据结构维护当前位置的区间序列,但是不会维护。
于是想研究性质,想到为什么要拿区间长度做权值呢,难道是有一些性质吗
于是思考了很久区间长度的性质,猜了一些sb结论,比如什么一个区间只有加入时和删除时的贡献算一下就可以了之类的...
全错了然后就自闭了...
然后想什么钦定最大值,然后询问位置区间,然后我发现线段树每个点要挂一个单调队列(事实上把单调队列从线段树上拿下来就是正解了,我当时一点都没想到),然后又自闭了
然后想干脆钦定最大最小值,反正只有\(n^2\)种,然后我们需要查询长度在最大最小值之间的区间,然后我们看一下这些区间的区间并有没有一个位置的值比\(m\)大,区间并可以染色,然后查询最大值
这样可以拿树套树暴力搞了,好像很对
然后发现如果扫描的最大值最小值两个指针的话,移动是\(O(n)\)的,好像叫尺取法把,然后就可以只维护一个线段树了。
Code:
#include <cstdio>
#include <cctype>
#include <algorithm>
using std::max;
const int SIZE=1<<21;
char ibuf[SIZE],*iS,*iT;
#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SIZE,stdin),iS==iT?EOF:*iS++):*iS++)
//#define gc() getchar()
template <class T>
void read(T &x)
{
x=0;char c=gc();
while(!isdigit(c)) c=gc();
while(isdigit(c)) x=x*10+c-'0',c=gc();
}
void ckmin(int &x,int y){x=x<y?x:y;}
const int inf=0x3f3f3f3f;
const int N=5e5+10;
int n,m,k,saki[N<<1];
struct _toki
{
int l,r,val;
bool friend operator <(_toki a,_toki b){return a.val<b.val;}
}toki[N];
int mx[N<<3],tag[N<<3];
#define ls id<<1
#define rs id<<1|1
void pushdown(int id)
{
if(tag[id])
{
mx[ls]+=tag[id],tag[ls]+=tag[id];
mx[rs]+=tag[id],tag[rs]+=tag[id];
tag[id]=0;
}
}
void upt(int id,int L,int R,int l,int r,int d)
{
if(r<L||l>R) return;
if(l<=L&&R<=r)
{
mx[id]+=d;
tag[id]+=d;
return;
}
pushdown(id);
int Mid=L+R>>1;
upt(ls,L,Mid,l,r,d),upt(rs,Mid+1,R,l,r,d);
mx[id]=max(mx[ls],mx[rs]);
}
int qry(int id,int L,int R,int l,int r)
{
if(r<L||l>R) return 0;
if(l<=L&&R<=r) return mx[id];
pushdown(id);
int Mid=L+R>>1;
return max(qry(ls,L,Mid,l,r),qry(rs,Mid+1,R,l,r));
}
int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
read(n),read(k);
for(int i=1;i<=n;i++)
{
read(toki[i].l),read(toki[i].r);
saki[++m]=toki[i].l,saki[++m]=toki[i].r;
toki[i].val=toki[i].r-toki[i].l;
}
std::sort(saki+1,saki+1+m);
m=std::unique(saki+1,saki+1+m)-saki-1;
for(int i=1;i<=n;i++)
{
toki[i].l=std::lower_bound(saki+1,saki+1+m,toki[i].l)-saki;
toki[i].r=std::lower_bound(saki+1,saki+1+m,toki[i].r)-saki;
}
std::sort(toki+1,toki+1+n);
int l=1,r=1,ans=inf;
while(r<=n)
{
upt(1,1,m,toki[r].l,toki[r].r,1);
while(qry(1,1,m,toki[r].l,toki[r].r)>=k)
{
ckmin(ans,toki[r].val-toki[l].val);
upt(1,1,m,toki[l].l,toki[l].r,-1);
++l;
}
++r;
}
if(ans==inf) puts("-1");
else printf("%d\n",ans);
return 0;
}
2019.5.30
「NOI2016」区间 解题报告的更多相关文章
- 「NOI2016」网格 解题报告
「NOI2016」网格 容易注意到,答案最多为2,也就是说答案为-\(1,0,1,2\)四种,考虑逐个判断. 无解的情况比较简单 如果\(nm\le c+1\),显然无解 如果\(nm=c+2\),判 ...
- 「HNOI2016」树 解题报告
「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...
- 「HNOI2016」序列 解题报告
「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...
- 「SCOI2016」美味 解题报告
「SCOI2016」美味 状态极差无比,一个锤子题目而已 考虑每次对\(b\)和\(d\)求\(c=d \ xor \ (a+b)\)的最大值,因为异或每一位是独立的,所以我们可以尝试按位贪心. 如果 ...
- 「SCOI2016」萌萌哒 解题报告
「SCOI2016」萌萌哒 这思路厉害啊.. 容易发现有个暴力是并查集 然后我想了半天线段树优化无果 然后正解是倍增优化并查集 有这个思路就简单了,就是开一个并查集代表每个开头\(i\)每个长\(2^ ...
- 「NOI2014」购票 解题报告
「NOI2014」购票 写完了后发现写的做法是假的...然后居然过了,然后就懒得管正解了. 发现需要维护凸包,动态加点,询问区间,强制在线 可以二进制分组搞,然后你发现在树上需要资瓷撤回,然后暴力撤回 ...
- 「NOI2017」整数 解题报告
「NOI2017」整数 有一些比较简单的\(\log^2n\)做法 比如暴力在动态开点线段树上维护每个位置为\(0\)还是\(1\),我们发现涉及到某一位加上\(1\)或者减去\(1\)实际上对其他位 ...
- 「ZJOI2016」旅行者 解题报告
「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...
- 「HNOI2016」网络 解题报告
「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...
随机推荐
- 阿里云李刚:下一代低延时的直播CDN
在上周落幕帷幕的多媒体领域技术盛会——LiveVideoStackCon音视频技术大会上,阿里云的高级技术专家李刚进行了<下一代低延时的直播CDN>技术分享.主讲人李刚,多年关注在CDN这 ...
- LVS负载均衡中arp_ignore和arp_annonuce参数配置
先简单的介绍下关于LVS负载均衡 LVS(Linux Virtual Server)Linux服务器集群系统 针对高可伸缩,高可用服务的需求,给予IP层和内容请求分发的负载均衡调度解决方法,并在Li ...
- MySqL rownum 序号 类似于 oracle的rownum
mysql中没有 rownum 序号的功能,所以需要自己去实现序号的功能. @rownum 只是一个变量 可以换为 @i 等其他变量,但必须有@符号 SELECT @rownum:=@rownum+1 ...
- Rainbow的信号 CH3801
题目链接 题意:求n个整数任意取一个区间,一起进行xor,and,或or的操作,求xor的期望值,and的期望值,or的期望值. 思路:区间取的左端点为l,右端点为r,当r==l时,选的概率为1/n/ ...
- window安装oracle和创建数据库
原文地址: https://www.cnblogs.com/hoobey/p/6010804.html #11g安装 https://www.cnblogs.com/qq1272850043/p/6 ...
- Linux随笔 - linux 多个会话同时执行命令后history记录不全的解决方案【转载】
基本认识linux默认配置是当打开一个shell终端后,执行的所有命令均不会写入到~/.bash_history文件中,只有当前用户退出后才会写入,这期间发生的所有命令其它终端是感知不到的. 问题场景 ...
- Linux随笔 - 修改主机名
1.临时修改主机名: hostname 主机名 修改只能临时有效,机器重启后会自动还原. 2.永久修改主机名: 修改hostname文件(路径:/etc/sysconfig/network),把hos ...
- linux远程管理器 - xshell和xftp使用教程(zhuan)
准备好连接linux服务器的工具,推荐用xshell和xftp. xshell 是一个强大的安全终端模拟软件,它支持SSH1, SSH2, 以及Microsoft Windows 平台的TELNET ...
- 第一次刷Leetcode,为什么耗费很多时间
Leetcode第2题思考过程分析:耗费的时间与思考过程 1. 审题耗费了很长时间,英文看不懂.两个单链表代表了两个整数,整数逆序,(2 -> 4 -> 3) + (5 -> 6 - ...
- Python笔记(十一)_匿名函数与map()、filter()
匿名函数 无需显式定义函数名,和函数过程,使代码更精简的lambda表达式 函数没有命名,不用担心函数名的冲突 冒号前面代表函数的参数,后面表示计算过程 >>>func=lambda ...