[2019多校联考(Round 6 T3)]脱单计划 (费用流)
[2019多校联考(Round 6 T3)]脱单计划 (费用流)
题面
你是一家相亲机构的策划总监,在一次相亲活动中,有 n 个小区的若干男士和 n个小区的若干女士报名了这次活动,你需要将这些参与者两两匹配(只能男生和 女生相匹配),每个小区都提供了自己的地址,用二维平面上的坐标(x,y)来表示,若 A 男所在小区的地址为(x1,y1),B 女所在小区的地址为(x2,y2),由“距离产生美”可得,A 男不 B 女匹配的亲密值为他们的曼哈顿距离|x1-x2|+|y1-y2|,现在要求你确定一种匹配方案使得总亲密值最大(每位男士只能匹配一位女士,每位女士也只能匹配一位男士)
分析
此题和[AGC 034D]Manhattan Max Matching几乎一模一样
小区之间两两连容量无穷,费用为两点间曼哈顿距离的边,原点到男士所在小区连容量为该小区男士数量,费用为0的边。女士所在小区到汇点同理。这样显然是会超时的。
考虑简化的情况,如果费用为\(x_1-x_2+y_1-y_2\),那么可以建一个辅助点u,\((x_1,y_1)\)男士对应的点向u连费用为\(x_1+y_1\)的边,u向女士\((x_2,y_2)\)连费用为\(-x_2-y_2\)的边。跑费用流的时候费用叠加,就得到了\(x_1-x_2+y_1-y_2\)。这样连边的边数是\(O(n)\)的
有绝对值符号怎么办。把绝对值按符号拆成4种情况。\(|x_1-x_2|+|y_1-y_2|=max(x_1-x_2+y_1-y_2,x_2-x_1+y_1-y_2,x_1-x_2+y_2-y_1,x_2-x_1+y_2-y_1)\)
建4个辅助点对应4种情况,每个点都像上面那样连边。
由于是最大费用,跑出来的是4种情况最大值,恰好就是曼哈顿距离取了绝对值符号后的结果。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<ctime>
#include<cstdlib>
#include<queue>
#define INF 0x3f3f3f3f3f3f3f3f
#define maxn 10000
#define maxm 3000000
using namespace std;
typedef long long ll;
int n,m;
inline void qread(int& x){
x=0;
int sign=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') sign=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
x=x*10+c-'0';
c=getchar();
}
x=x*sign;
}
inline void qread(ll& x){
x=0;
int sign=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') sign=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
x=x*10+c-'0';
c=getchar();
}
x=x*sign;
}
struct node{
ll x;
ll y;
int c;
}a[maxn+5],b[maxn+5];
inline ll get_dist(node p,node q){
return abs(p.x-q.x)+abs(p.y-q.y);
}
namespace network_flow{
struct edge{
int from;
int to;
int next;
ll flow;
ll cost;
}E[maxm+5];
int head[maxn+5];
int sz=1;
void add_edge(int u,int v,ll w,ll c){
#ifdef DEBUG
// printf("%d->%d vol=%lld cost=%lld\n",u,v,w,c);
#endif
c=-c;
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].flow=w;
E[sz].cost=c;
E[sz].next=head[u];
head[u]=sz;
sz++;
E[sz].from=v;
E[sz].to=u;
E[sz].flow=0;
E[sz].cost=-c;
E[sz].next=head[v];
head[v]=sz;
}
bool inq[maxn+5];
int pre[maxn+5];
ll minf[maxn+5];
ll dist[maxn+5];
bool spfa(int s,int t){
for(int i=s;i<=t;i++){
inq[i]=0;
pre[i]=0;
dist[i]=INF;
minf[i]=INF;
}
queue<int>q;
q.push(s);
inq[s]=1;
dist[s]=0;
while(!q.empty()){
int x=q.front();
q.pop();
inq[x]=0;
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(E[i].flow&&dist[y]>dist[x]+E[i].cost){
dist[y]=dist[x]+E[i].cost;
pre[y]=i;
minf[y]=min(minf[x],E[i].flow);
if(!inq[y]){
q.push(y);
inq[y]=1;
}
}
}
}
return dist[t]!=INF;
}
void update(int s,int t){
int x=t;
while(x!=s){
int i=pre[x];
E[i].flow-=minf[t];
E[i^1].flow+=minf[t];
x=E[i].from;
}
}
ll mcmf(int s,int t){
ll flow=0,cost=0;
while(spfa(s,t)){
flow+=minf[t];
cost+=minf[t]*dist[t];
update(s,t);
}
return -cost;
}
void solve(){
int s=0,t=n*2+5;
int p1=n*2+1,p2=n*2+2,p3=n*2+3,p4=n*2+4;
for(int i=1;i<=n;i++){
add_edge(s,i,a[i].c,0);
}
for(int i=1;i<=n;i++){
add_edge(i+n,t,b[i].c,0);
}
//绝对值分符号拆成4个,用4个辅助点连边
//因为是最大费用,4种情况取最大值就是绝对值
//这样就把边数从O(n^2)变成O(n)
for(int i=1;i<=n;i++){
//x1-x2+y1-y2
add_edge(i,p1,INF,a[i].x+a[i].y);
add_edge(p1,i+n,INF,-b[i].x-b[i].y);
//x1-x2+y2-y1
add_edge(i,p2,INF,a[i].x-a[i].y);
add_edge(p2,i+n,INF,-b[i].x+b[i].y);
//x2-x1+y1-y2
add_edge(i,p3,INF,-a[i].x+a[i].y);
add_edge(p3,i+n,INF,b[i].x-b[i].y);
//x2-x1+y2-y1
add_edge(i,p4,INF,-a[i].x-a[i].y);
add_edge(p4,i+n,INF,b[i].x+b[i].y);
}
printf("%lld\n",mcmf(s,t));
}
}
int main(){
// freopen("1.in","r",stdin);
qread(n);
for(int i=1;i<=n;i++){
qread(a[i].x);
qread(a[i].y);
qread(a[i].c);
}
for(int i=1;i<=n;i++){
qread(b[i].x);
qread(b[i].y);
qread(b[i].c);
}
network_flow::solve();
}
[2019多校联考(Round 6 T3)]脱单计划 (费用流)的更多相关文章
- [多校联考2019(Round 5 T3)]青青草原的表彰大会(dp+组合数学)
[多校联考2019(Round 5)]青青草原的表彰大会(dp+组合数学) 题面 青青草原上有n 只羊,他们聚集在包包大人的家里,举办一年一度的表彰大会,在这次的表彰大会中,包包大人让羊们按自己的贡献 ...
- [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)
[多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...
- [多校联考2019(Round 5 T2)]蓝精灵的请求(二分图染色+背包)
[多校联考2019(Round 5)]蓝精灵的请求(二分图染色+背包) 题面 在山的那边海的那边住着 n 个蓝精灵,这 n 个蓝精灵之间有 m 对好友关系,现在蓝精灵们想要玩一个团队竞技游戏,需要分为 ...
- 三校联考 Day3
三校联考 Day3 大水题 题目描述:给出一个圆及圆上的若干个点,问两个点间的最远距离. solution 按极角排序,按顺序枚举,显然距离最远的点是单调的,线性时间可解出答案. 大包子的束缚 题目描 ...
- 【赛时总结】NOIP2018-三校联考1024
◇NOIP三校联考-1024◇ 发现以前的博客写得似乎都很水……基本上都没什么阅读量QwQ 决定改过自新╰( ̄ω ̄o) 就从这篇博客开始吧~ 现场考得无地自容,看到题解才发现一些东西……(我第三题还没 ...
- 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你
[五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...
- 【五校联考1day2】JZOJ2020年8月12日提高组T1 对你的爱深不见底
[五校联考1day2]JZOJ2020年8月12日提高组T1 对你的爱深不见底 题目 Description 出乎意料的是,幸运E 的小R 居然赢了那个游戏.现在欣喜万分的小R 想要写一张明信片给小Y ...
- 2019十二省联考 Round 1 && 济南市市中心游记
在这样一场毒瘤的省选中 这道题目无疑是命题人无私的馈赠 大量精心构造的部分分,涵盖了题目中所有涉及的算法 你可以利用这道题目,对你是否能够进入省队进行初步检查 经典的模型.较低的难度和不大的代码量,能 ...
- [2017/5/28]FJ四校联考
来自FallDream的博客,未经允许,请勿转载,谢谢. 话说这一段时间算是过去了,好久好久之后终于又有联考了 没想到这次到我们学校出题,昨天才想起来,临时花一天赶了一套,我出了一个sbFFT,质量 ...
随机推荐
- [人物存档]【AI少女】【捏脸数据】两个人物
点击下载(城通网盘):8bcd58f40ad162d9c1fd6f641edfa9ec8b13cdf8.png 点击下载(城通网盘):AISChaF_20191110015122738.png
- Mybatis mysql 一个搜索框多个字段模糊查询 几种方法
第一种 or 根据搜索框给定的关键词,模糊搜索用户名和账号都匹配的用户集合 <select id="list" parameterType="com.user.Us ...
- net core 返回404方法
public void Configure(IApplicationBuilder app, IHostingEnvironment env) { if (env.IsDevelopment()) { ...
- .NET面试题系列(十九)Socket网络异常类型
序言 资料 异常测试之Socket网络异常
- CF Round #576 (Div. 2) Matching vs Independent Set
链接:Click here 题目意思:给你一个图,有3n个点,m条边,求是否有n条匹配边或n个独立点,其中匹配为没有公共点,独立为不相连 Solution: 考虑每个点对于第一种情况,最多只能贡献一次 ...
- Pku2978 Colored stones
题目链接:Click here Solution: 状压dp,考虑\(f[i][j][k]\)表示当前到了第i个石头,颜色状态为j,选取的最后一个石头颜色为k时能够留下的石头的最大数量 转移也很好转移 ...
- 配置 Hive On Tez
配置 Hive On Tez 标签(空格分隔): hive Tez 部署底层应用 简单介绍 介绍:tez 是基于hive 之上,可以将sql翻译解析成DAG计算的引擎.基于DAG 与mr 架构本身的优 ...
- python之正则匹配match:search findall
match:从开头位置匹配,只匹配一次,开头匹配不上,则不继续匹配 a,b,\w+ match(a,"abcdef") 匹配a >>> re.match(&quo ...
- mini dc(选做)
一.题目要求 提交测试截图和码云练习项目链接,实现Linux下dc的功能,计算后缀表达式的值 二.源代码 1.MyDC类 import java.util.StringTokenizer; impor ...
- zabbix 监控安装部署
今天尝试一下部署zabbix 官方文档包括多个版本,此处选择4.0版本 https://www.zabbix.com/documentation/4.0/manual 1.安装环境选择 zabbix4 ...