bzoj4455 & loj2091 [Zjoi2016]小星星 容斥原理+树形DP(+状压DP?)
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=4455
题解
很不错的一道题。(不过在当时考场上应该是签到吧
有一种很显然是错的的树形 DP 方法:
令 \(dp[x][i]\) 表示树上 \(x\) 对于图上 \(i\) 这个点,然后转移的时候直接枚举 \(x\) 的孩子和 \(i\) 的孩子进行匹配。
这样显然会有很多重复配对(即树上的两个点配对图上同一个点)的。然后我就很快把这个算法给放弃了。
(应该多想想的;得到一个教训:想到一个假算法以后要看看有没有一个方法把这个算法给改成正确的
然后正解就非常妙了:因为既然会有重复配对,那么图上也一定会有没有被配对的点。所以可以考虑直接容斥一下有那些点没有被配对,这些点就是禁止选的了。
最终容斥完医护就可以得到正确答案了。
时间复杂度 \(O(2^nn^3)\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 17 + 7;
int n, m, cnt;
ll ans;
int ban[N];
ll dp[N][N];
std::vector<int> g1[N], g2[N];
inline void dfs(int x, int fa = 0) {
for (int i = 1; i <= n; ++i) dp[x][i] = !ban[i];
int len = g2[x].size();
for (int ii = 0, y; ii < len; ++ii) if (y = g2[x][ii], y != fa) {
dfs(y, x);
for (int i = 1; i <= n; ++i) if (!ban[i]) {
int len = g1[i].size();
ll sum = 0;
for (int jj = 0, j; jj < len; ++jj) {
j = g1[i][jj];
sum += dp[y][j];
}
dp[x][i] = dp[x][i] * sum;
}
}
}
inline void calc() {
dfs(1);
ll sum = 0;
for (int i = 1; i <= n; ++i) if (!ban[i]) sum += dp[1][i];
if (cnt & 1) ans -= sum;
else ans += sum;
}
inline void dfs1(int x) {
if (x == n + 1) return calc();
ban[x] = 0, dfs1(x + 1);
ban[x] = 1, ++cnt, dfs1(x + 1), --cnt;
}
inline void work() {
dfs1(1);
printf("%lld\n", ans);
}
inline void init() {
read(n), read(m);
int x, y;
for (int i = 1; i <= m; ++i) read(x), read(y), g1[x].pb(y), g1[y].pb(x);
for (int i = 1; i < n; ++i) read(x), read(y), g2[x].pb(y), g2[y].pb(x);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
bzoj4455 & loj2091 [Zjoi2016]小星星 容斥原理+树形DP(+状压DP?)的更多相关文章
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)
传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...
- [转]状态压缩dp(状压dp)
状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...
- 状态压缩dp 状压dp 详解
说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...
- 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)
题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...
- BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]
4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...
- 51nod 1673 树有几多愁(链表维护树形DP+状压DP)
题意 lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输出 ...
- BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】
题目链接 BZOJ3836 题解 显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质 这意味着什么呢? \(dfs\)树深度不超过\(10\) \(10\)很 ...
随机推荐
- WINDOWS2008server安全策略设置
一.防止黑客或恶意程序暴力破解我的系统密码 答: 暴力破解Windows密码实质上是通过穷举算法来实现,尤其是密码过于简单的系统,暴力破解的方法还是比较实用的.有一点需要我们注意,这个问题的关键在于W ...
- CSS3订单提交按钮Loading代码
<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"& ...
- (转)dial tcp 10.96.0.1:443: getsockopt: no route to host --- kubernetes(k8s)DNS 服务反复重启
转:https://blog.csdn.net/shida_csdn/article/details/80028905 kubernetes(k8s)DNS 服务反复重启解决: k8s.io/dns/ ...
- keras:InternalError: Failed to create session
如题,keras出现以上错误,解决办法: 找到占用gpu的进程: nvidia-smi -q 杀死这些进程即可: xxxxx
- 初步学习JS中的闭包
JS高级程序设计(3rd)中对闭包的定义就是一句话,首先闭包是一个函数,怎样的函数呢?有权访问另一个函数作用域中的变量 的函数.而创建闭包的常见方式就是在一个函数的内部创建另一个函数,就是嵌套函数. ...
- C++ STL:优先队列的使用详解
堆是一个很重要的数据结构,那么我们如何更加简洁的去写大根/小根堆呢? 对于很多语言来说,只能一步一步手打,但是对于C++来说,写大根小根堆就简便得多,因为C++中有一个容器叫做priority_que ...
- opencv部署服务器报错
报错内容: ImportError: libSM.so.6: cannot open shared object file: No such file or directory 解决办法: sudo ...
- c.vim
放在 /usr/share/vim/vim80/syntax/c.vim 最后: syn match cFunctions "\<[a-zA-Z_][a-zA-Z_0-9]*\> ...
- [洛谷P1552] [APIO2012]派遣(左偏树)
这道题是我做的左偏树的入门题,奈何还是看了zsy大佬的题解才能过,唉,我太弱了. 左偏树总结 Part 1 理解题目 很显然,通过管理关系的不断连边,最后连出来的肯定是一棵树,那么不难得出,当一个忍者 ...
- 8、numpy——数组的迭代
1.单数组的迭代 NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式. 迭代器最基本的任务的可以完成对数组元素的访问. 1.1 默认迭代顺序 import ...