线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学能够參考上一篇文章《线性回归、梯度下降》。

本篇文章主要解说使用最小二乘法法构建损失函数最小化损失函数的方法。

最小二乘法构建损失函数

最小二乘法也一种优化方法,用于求得目标函数的最优值。简单的说就是:让我们的预測值与真实值总的拟合误差(即总残差)达到最小。

在线性回归中使用最小二乘法构建了损失函数:

上一篇文章《线性回归、梯度下降》中提到求解使损失函数J(θ)取最小的θ值有两种方法:梯度下降(gradient descent)正则方程(The normal equations)。以下主要讲一下正则方程。梯度下降方法最小化损失函数參考文章《线性回归、梯度下降

正则方程

将训练特征表示为X矩阵,结果表示成y向量,仍然是线性回归模型。损失函数不变。那么θ能够直接由以下公式得出:

推导过程涉及线性代数方面的知识,这里不再具体展开线性代数知识。

设m为训练样本数;x为样本中的自变量,即二手房价格预測中的房屋面积和我是数目。x为n维向量;向量y为训练数据中的房屋价格。y为m维向量。那么训练数据能够用矩阵表示为:

           

由于,所以就能够表示为:

损失函数就转化为:

线性代数中有两个公式:

当中符号表示一个m*n的矩阵。这个矩阵的第(i,j)个元素为

上面两个公式合起来能够表示为:

根据这这个公式对损失函数J(θ)推导:

为了最小化J(θ)。又由于J(θ)由最小二乘法得到,J(θ)的取值大于等于0。即最小值为0。

所以,我们使,从而得到θ取值:

损失函数 - Andrew Ng机器学习公开课笔记1.2的更多相关文章

  1. Andrew Ng机器学习公开课笔记 -- 支持向量机

    网易公开课,第6,7,8课 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量机算法概述, 这篇讲的挺好,可以参考   先继 ...

  2. Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)

    网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Compo ...

  3. Andrew Ng机器学习公开课笔记 -- 学习理论

    网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/va ...

  4. Andrew Ng机器学习公开课笔记 -- Regularization and Model Selection

    网易公开课,第10,11课 notes,http://cs229.stanford.edu/notes/cs229-notes5.pdf   Model Selection 首先需要解决的问题是,模型 ...

  5. Andrew Ng机器学习公开课笔记–Reinforcement Learning and Control

    网易公开课,第16课 notes,12 前面的supervised learning,对于一个指定的x可以明确告诉你,正确的y是什么 但某些sequential decision making问题,比 ...

  6. Andrew Ng机器学习公开课笔记 – Factor Analysis

    网易公开课,第13,14课 notes,9 本质上因子分析是一种降维算法 参考,http://www.douban.com/note/225942377/,浅谈主成分分析和因子分析 把大量的原始变量, ...

  7. Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降

    网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个 ...

  8. Andrew Ng机器学习公开课笔记 -- Logistic Regression

    网易公开课,第3,4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面讨论了线性回归问题, 符合高斯分布,使用最小二乘来作为损失函数 ...

  9. Andrew Ng机器学习公开课笔记–Independent Components Analysis

    网易公开课,第15课 notes,11 参考, PCA本质是旋转找到新的基(basis),即坐标轴,并且新的基的维数大大降低 ICA也是找到新的基,但是目的是完全不一样的,而且ICA是不会降维的 对于 ...

随机推荐

  1. XCode6报数组越界错误的问题

    今天碰到一个非常奇葩的问题, 调试了半天: 错误:"index 0 beyond bounds for empty array",  意思就是说数据源数组为nil, 所以你调用直接 ...

  2. Icomparer和Icomparable集合排序

    c#中实现对象集合的排序可以使用ArrayList中的Sort()方法,而有比较才能谈排序,因为不是基本类型(如string ,int.double......等)所以.NET Framework不可 ...

  3. vue -- config index.js 配置文件详解

    此文章介绍vue-cli脚手架config目录下index.js配置文件 此配置文件是用来定义开发环境和生产环境中所需要的参数 关于注释 当涉及到较复杂的解释我将通过标识的方式(如(1))将解释写到单 ...

  4. Whitening

    The goal of whitening is to make the input less redundant; more formally, our desiderata are that ou ...

  5. 51Nod 迷宫问题(最短路+权值)(模板)

    你来到一个迷宫前.该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分数.还有若干双向道路连结这些房间,你沿着这些道路从一个房间走到另外一个房间需要一些时间.游戏规定了 ...

  6. maven项目引入sqljdbc4 找不到包的完美 解决方案

    今天碰到了这个问题,解决了,顺便做一下记录.首先来 重现 一下这个问题,maven install报错,说 找不到这个包,但是其实 我已经安装了. 我们 再来 看看 maven本地仓库里面有 什么,这 ...

  7. js对象拷贝的方法

     对象拷贝的方法是一个难点,尤其是深拷贝.建议把代码都运行下,帮助理解拷贝. 一. json方法 1. 适合情况:  JSON对象的深度克隆.方法是先JSON.stringify() 转为json字符 ...

  8. pwconv---pwunconv 密码投影

    pwconv命令用来开启用户的投影密码.Linux系统里的用户和群组密码,分别存放在名称为passwd和group的文件中, 这两个文件位于/etc目录下.因系统运作所需,任何人都得以读取它们,造成安 ...

  9. .Net 程序在自定义位置查找托管/非托管 dll 的几种方法

    原文:.Net 程序在自定义位置查找托管/非托管 dll 的几种方法 一.自定义托管 dll 程序集的查找位置 目前(.Net4.7)能用的有2种: #define DEFAULT_IMPLEMENT ...

  10. 【2017 Multi-University Training Contest - Team 4】Counting Divisors

    [Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6069 [Description] 定义d(i)为数字i的因子个数; 求∑rld(ik) 其中l,r ...