Time Limit: 2000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu

Submit
Status

Description

You will be given two sets of integers. Let's call them set A and set
B. Set A contains n elements and set
B contains m elements. You have to remove
k1
elements from set A and k2 elements from set
B so that of the remaining values no integer in set B is a multiple of any integer in set
A. k1 should be in the range
[0, n]
and k2 in the range [0, m].

You have to find the value of (k1 + k2) such that
(k1 + k2) is as low as possible. P is a multiple of
Q if there is some integer K such that
P
= K * Q.

Suppose set A is {2, 3, 4, 5} and set
B
is {6, 7, 8, 9}. By removing 2 and
3
from A and 8 from B, we get the sets
{4, 5} and {6, 7, 9}. Here none of the integers
6, 7 or 9 is a multiple of 4 or
5.

So for this case the answer is 3 (two from set
A and one from set B).

Input

Input starts with an integer T (≤ 50), denoting the number of test cases.

The first line of each case starts with an integer n followed by
n positive integers. The second line starts with m followed by
m positive integers. Both n and m will be in the range
[1, 100]. Each element of the two sets will fit in a 32 bit signed integer.

Output

For each case of input, print the case number and the result.

Sample Input

2

4 2 3 4 5

4 6 7 8 9

3 100 200 300

1 150

Sample Output

Case 1: 3

Case 2: 0

Source

Problem Setter: Sohel Hafiz
Special Thanks: Jane Alam Jan



给了两个集合A,B,分别有n,m个数,从A取k1个数,B取k2个数,使得b[ j ]%a[ i ]==0的情况不存在

刚开始以为可以暴力的,但是后来发现暴力真的是挺麻烦,把图画出来之后会发现,其实就是最小点覆盖,二分图性质:最小点覆盖=最大匹配,匈牙利算法跑一次

#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
vector<int>map[200];
int used[200],pipei[200],a[200],b[200];
int n,m;
int find(int x)
{ for(int i=0;i<map[x].size();i++)
{
int y=map[x][i];
if(!used[y])
{
used[y]=1;
if(pipei[y]==-1||find(pipei[y]))
{
pipei[y]=x;
return 1;
}
}
}
return 0;
}
int main()
{
int t,k=1;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(pipei,-1,sizeof(pipei));
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
map[i].clear();
}
scanf("%d",&m);
for(int i=0;i<m;i++)
scanf("%d",&b[i]);
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(b[j]%a[i]==0)
{
map[i].push_back(j);
}
}
}
int sum=0;
for(int i=0;i<n;i++)
{
memset(used,0,sizeof(used));
sum+=find(i);
}
printf("Case %d: %d\n",k++,sum);
}
return 0;
}

LightOJ--1149--Factors and Multiples(二分图好题)的更多相关文章

  1. light oj 1149 Factors and Multiples(二分匹配)

    LightOJ1149 :Factors and Multiples 时间限制:2000MS    内存限制:32768KByte   64位IO格式:%lld & %llu 描述 You w ...

  2. 【二分图裸题】poj1325机器调度

    题目大意:有两个机器A和B,A机器有n个模式,B机器有m个模式,两个机器最初在0模式 然后有k个作业,每个作业有三个参数i,a,b i代表作业编号,a和b代表第i作业要么在A机器的a模式下完成[或者] ...

  3. HDU - 1054 Strategic Game (二分图匹配模板题)

    二分图匹配模板题 #include <bits/stdc++.h> #define FOPI freopen("in.txt", "r", stdi ...

  4. POJ 3041 Asteroids(二分图模板题)

    Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N g ...

  5. Factors and Multiples

    Factors and Multiples   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Y ...

  6. (LightOJ 1149) Factors and Multiples

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1149 Description You will be given two sets o ...

  7. hdu1083二分图匹配模板题

    onsider a group of N students and P courses. Each student visits zero, one or more than one courses. ...

  8. 51nod 2006 飞行员配对(二分图最大匹配) 裸匈牙利算法 求二分图最大匹配题

    题目: 题目已经说了是最大二分匹配题, 查了一下最大二分匹配题有两种解法, 匈牙利算法和网络流. 看了一下觉得匈牙利算法更好理解, 然后我照着小红书模板打了一遍就过了. 匈牙利算法:先试着把没用过的左 ...

  9. lightoj 1148 Mad Counting(数学水题)

    lightoj 1148 Mad Counting 链接:http://lightoj.com/volume_showproblem.php?problem=1148 题意:民意调查,每一名公民都有盟 ...

随机推荐

  1. 书不在多,精读则灵 - Oracle入门书籍推荐

      作者:eygle |English [转载时请标明出处和作者信息]|[恩墨学院 OCM培训传DBA成功之道]链接:http://www.eygle.com/archives/2006/08/ora ...

  2. Hibernate_01_初体验

    hibernate开发的基本步骤: 编写配置文档hibernate.cfg.xml: 编写实体类: 生成对应实体类的映射文件并添加到配置文档中: 调用hibernate API进行测试. Hibern ...

  3. asp.net ajax 简单案例

    第一步先引用 scriptManager <asp:UpdatePanel ID="UpdatePanelGuanZhu" runat="server"& ...

  4. 我的C++笔记(数据的共享与保护)

    *数据的共享与保护: * .作用域: * 作用域是一个标识符在程序正文中有效的区域.C++中标识符的作用域有函数原型作用域.局部作用域(块作用域).类作用域和命名空间作用域. * ().函数原型作用域 ...

  5. Memcached 之分布式算法原理

    memcached并不像mongodb一样可以配置多个节点,并且节点之间可以”自动分配数据“,即相互通信,所以我们在做memcache分布式集群的时候要有一个算法来保证当一台memcache服务器宕机 ...

  6. CDR服装设计-旗袍款式图

    在服装行业中的服装款式设计.图案设计和面料设计等方面,CorelDRAW是一款常用绘图设计软件,用CorelDRAW绘制款式图比手绘更容易表达服装结构.比例.图案.色彩等要素,服装款图主要目的是为了更 ...

  7. pyqt5 做的小程序,可以用来UI做个小demo

    #!/usr/bin/python3# -*- coding: utf-8 -*- """ZetCode PyQt5 tutorial This program crea ...

  8. MySQL+Keepalived实现主主高可用方案

    Mysql主主高可用方案 master配置 [root@master ~]# yum -y install keepalived [root@master ~]# vim /etc/keepalive ...

  9. [接口管理平台] eoLinker AMS 专业版 V3.5 :加入数据结构管理、通用函数管理、API 快速测试等近 30 项更新

    eoLinker AMS是集API文档管理.API自动化测试.开发协作三位一体的综合API开发管理平台,是中国最大的在线API管理平台.目前eoLinker AMS已经为来自全球的超过两万家企业托管超 ...

  10. codeforces 466B Wonder Room(思维,暴力)

    题目 参考了别人的博客,百度来的博客 #include<iostream> #include<string> #include<stdio.h> #include& ...