Code:

#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
#define maxn 1002
#define ll long long
#define inf 100000000000
int minv[maxn][maxn], maxv[maxn][maxn];
struct Node{
ll val;
int pos;
Node(ll val=0,int pos=0):val(val),pos(pos){}
};
deque<Node>Q[2];
int main(){
//freopen("input.in","r",stdin);
int a,b,n;
ll ans=inf,p;
scanf("%d%d%d",&a,&b,&n);
for(int i=1;i<=a;++i){
for(int j=1;j<=b;++j) {
scanf("%lld",&p);
while(!Q[0].empty()&&Q[0].front().pos<j-n+1)Q[0].pop_front();
while(!Q[1].empty()&&Q[1].front().pos<j-n+1)Q[1].pop_front();
while(!Q[0].empty()&&Q[0].back().val>=p) Q[0].pop_back();
while(!Q[1].empty()&&Q[1].back().val<=p) Q[1].pop_back();
Q[0].push_back(Node(p,j)),Q[1].push_back(Node(p,j));
if(j>=n) minv[i][j]=Q[0].front().val, maxv[i][j]=Q[1].front().val;
}
while(!Q[0].empty())Q[0].pop_back();
while(!Q[1].empty())Q[1].pop_back();
}
for(int i=n;i<=b;++i){
for(int j=1;j<=a;++j){
while(!Q[0].empty()&&Q[0].front().pos<j-n+1)Q[0].pop_front();
while(!Q[1].empty()&&Q[1].front().pos<j-n+1)Q[1].pop_front();
while(!Q[0].empty()&&Q[0].back().val>=minv[j][i]) Q[0].pop_back();
while(!Q[1].empty()&&Q[1].back().val<=maxv[j][i]) Q[1].pop_back();
Q[0].push_back(Node(minv[j][i],j)),Q[1].push_back(Node(maxv[j][i],j));
if(j>=n) ans=min(ans,Q[1].front().val-Q[0].front().val);
}
while(!Q[0].empty())Q[0].pop_back();
while(!Q[1].empty())Q[1].pop_back();
}
printf("%lld",ans);
return 0;
}

  

[HAOI2007]理想的正方形 单调队列 暴力的更多相关文章

  1. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  2. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  3. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  4. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  5. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  6. BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞

    题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...

  7. [HAOI2007] 理想的正方形 (单调队列)

    题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...

  8. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  9. BZOJ 1047 理想的正方形(单调队列)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1047 题意:给出一个n*m的矩阵.在所有K*K的子矩阵中,最大最小差值最小的是多少? 思 ...

随机推荐

  1. Linux开放1521端口允许网络连接Oracle Listener

    症状: 1. TCP/IP连接是通的.可以用ping 命令测试. 2. 服务器上Oracle Listener已经启动.   lsnrctl status  查看listener状态   lsnrct ...

  2. 92.bower 需要git

    转自:https://blog.csdn.net/chenleismr/article/details/50458496Bower 是基于 Git 之上的包管理工具,它提供的包其源头都是一个 Git ...

  3. JS高级之简单类的定义和继承

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  4. Eclipse schema xml提示

    步骤一:确定xsd文件位置 spring-framework-3.2.0.RELEASE\schema\beans  步骤二:复制路径  步骤三:搜索“xml catalog”  步骤四:添加约束提示 ...

  5. js的调试和优化

    一.常见的错误和异常 1.拼写错误 拼写错误,可以有代码的高亮来发现. 2.访问不存在的变量 3.括号不匹配 养成规范的编写习惯,适当应用Tab.空行等. 4.字符串和变量链接错误 采用多加括号来进行 ...

  6. C语言基础 (2) linux命令

    01.课程回顾 链接 ln 1.txt aaa.txt  硬链接 (两个相互独立 删除一个另外一个还在) ln -s 1.txt aaa.txt软连接 (后面的是快捷方式) 硬链接只能是文件,软连接可 ...

  7. vmware vsphere出现“需要整合虚拟机磁盘”的告警处理方法(完整版)

    vmware vsphere出现“需要整合虚拟机磁盘”的告警 处理步骤: 1.选择对应虚机,快照——整合 (不行看下一条) 通常情况执行完第一步就好了 2.如果整合报错,提示文件锁定 2.1 新建快照 ...

  8. mac同时享受教育优惠和免手续费分期

    神奇地址:工商银行  http://store.apple.com/cn_icbc_edu招商银行  http://store.apple.com/cn_cmb_edu农业银行  http://sto ...

  9. python 中进制转换及format(),int()函数用法

    python中数值型变量好像只能是十进制形式表示,其他类型变量只能以字符串形式存在,可以通过format函数将int类型变量转换成其他进制字符串,如下所示: v_code=15 # 2进制 x=for ...

  10. linux进程管理之概念(一)

    一.进程和线程的概念 1.进程和线程的定义 进程并不只是一段可以运行的代码,也包含了运行代码所需要的资源. 在操作系统来看,进程是资源管理的最小单元,而我们又知道,线程是程序执行的最小单元. 话说回来 ...