传送门:

解题思路:

要求一条直线分割矩阵时左右颜色数一样,那么就说明一个问题。
直线左右移动时是不会改变左右矩阵的颜色集合的。
所以说明:2~m-1列的颜色集一定属于第一列与第m列颜色集的交集。
而且第一列与第m列颜色集大小相等。
显然需要预处理n个点m种颜色的方案数,设为$g(i,j)$
这样,只需要确定第一列和最后一列颜色集,假设交集是$i$种颜色,
就可以算出中间的颜色方案数:$i^{n*(m-2)}$
假设两边颜色个数都是$j$($j\ge i$)那么两边颜色的答案($(g(n,j)j!)^2$)
这$i$种颜色共有$C_k^i$种选法,两边各$j$种颜色,且只有$i$种颜色相同的方案就是:
$\Large C_k^iC_{k-i}^{2(j-i)}C_{2(j-i)}^{j-i}$
那么答案就是
$\Large\sum\limits_{i=1}^{n}\sum\limits_{j=i}^{n}C_k^iC_{k-i}^{2(j-i)}C_{2(j-i)}^{j-i}{(g(n,j)j!)^2}{i^{n(m-2)}}$
代码:

 #include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long lnt;
const lnt mod=;
lnt g[][];
lnt fac[];
lnt inv[];
int n,m,k;
lnt ans;
lnt ksm(lnt a,lnt b)
{
lnt ans=;
while(b)
{
if(b&)ans=ans*a%mod;
a=a*a%mod;
b=b/;
}
return ans;
}
lnt C(int x,int y)
{
if(y>x)return ;
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
lnt squ(lnt x)
{
return x*x%mod;
}
int main()
{
g[][]=;
fac[]=inv[]=fac[]=inv[]=;
for(int i=;i<=;i++)
{
fac[i]=(fac[i-]*i)%mod;
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
}
for(int i=;i<=;i++)inv[i]=inv[i]*inv[i-]%mod;
scanf("%d%d%d",&n,&m,&k);
if(m==)
{
printf("%I64d\n",ksm(k,n));
return ;
}
for(int i=;i<=n;i++)
{
for(int j=;j<=i&&j<=k;j++)
{
g[i][j]=(g[i-][j-]+g[i-][j]*j)%mod;
}
}
for(int i=;i<=n;i++)
{
lnt tmp=ksm(i,n*(m-))*C(k,i)%mod;
for(int j=i;j<=n;j++)
{
ans=(ans+tmp*C(k-i,(j-i)*)%mod*C((j-i)*,j-i)%mod*squ(g[n][j]*fac[j]%mod)%mod)%mod;
}
}
printf("%I64d\n",(ans%mod+mod)%mod);
return ;
}

codeforces111D. Petya and Coloring(组合数学,计数问题)的更多相关文章

  1. cf111D Petya and Coloring 组合数学,二项式反演

    http://codeforces.com/contest/111/problem/D Little Petya loves counting. He wants to count the numbe ...

  2. 2017/10 冲刺NOIP集训记录:暁の水平线に胜利を刻むのです!

    前几次集训都没有记录每天的点滴……感觉缺失了很多反思的机会. 这次就从今天开始吧!不能懈怠,稳步前进! 2017/10/1 今天上午进行了集训的第一次考试…… 但是这次考试似乎是近几次我考得最渣的一次 ...

  3. codeforces 111D

    题目链接 D. Petya and Coloring time limit per test 5 seconds memory limit per test 256 megabytes input s ...

  4. hdu 5738 2016 Multi-University Training Contest 2 Eureka 计数问题(组合数学+STL)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5738 题意:从n(n <= 1000)个点(有重点)中选出m(m > 1)个点(选出的点只 ...

  5. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  6. CodeForces 149D Coloring Brackets

    Coloring Brackets time limit per test: 2 seconds memory limit per test: 256 megabytes input: standar ...

  7. 置换群、Burnside引理与等价类计数问题

    置换群.Burnside引理与等价类计数问题 标签: 置换群 Burnside引理 置换 说说我对置换的理解,其实就是把一个排列变成另外一个排列.简单来说就是一一映射.而置换群就是置换的集合. 比如\ ...

  8. Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp

    题目链接: http://codeforces.com/problemset/problem/149/D D. Coloring Brackets time limit per test2 secon ...

  9. 组合数学--Polya 原理及典型应用

    Redfield-Polya (Pólya enumeration theorem,简称PET)定理是组合数学理论中最重要的定理之一.自从 1927 年 Redfield 首次运用 group red ...

随机推荐

  1. 洛谷 P3662 [USACO17FEB]Why Did the Cow Cross the Road II S

    P3662 [USACO17FEB]Why Did the Cow Cross the Road II S 题目描述 The long road through Farmer John's farm ...

  2. [Angular] Create a ng-true-value and ng-false-value in Angular by controlValueAccessor

    If you're coming from AngularJS (v1.x) you probably remember the ng-true-value and ng-false-value di ...

  3. 架构设计--用户端全http參数接口具体说明v1

    1. 用户端全http參数接口具体说明v1.doc 1 2. change histor 1 3. 接口通用參数说明 1 4. 函数注冊接口(规划中) 3 5. 用户权限模块 3 5.1. 用户注冊接 ...

  4. 浅析为什么 char 类型的范围是 : -128~+127

    在 C 语言中. signed char 类型的范围为 -128~127,每本教科书上也这么写.可是没有哪一本书上(包含老师)也不会给你为什么是 -128~127,这个问题貌似看起来也非常easyea ...

  5. pydev 安装

    pydev断断续续空余时间安装了好几天,终于安装上了,需要注意的几点有, 1.插件地址 http://update-production-pydev.s3.amazonaws.com/pydev/up ...

  6. hdoj--2036--改革春风吹满地(数学几何)

    改革春风吹满地 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  7. [HNOI2008] GT考试(DP+矩阵快速幂+KMP)

    题目链接:https://www.luogu.org/problemnew/show/P3193#sub 题目描述 阿申准备报名参加 GT 考试,准考证号为 N 位数 X1,X2…Xn(0 <= ...

  8. Java hashCode(), equals()

    转自:http://blog.csdn.net/fenglibing/article/details/8905007冯立彬的博客 以下是关于HashCode的官方文档定义: hashcode方法返回该 ...

  9. PostgreSQL备份与还原

    物理备份:整个数据库的数据目录及文件做备份:备份整个数据库的文件系统. 物理恢复:恢复整个数据库的文静系统. 物理备份方法: 开启归档 select pg_start_backup('backup—— ...

  10. CMake入门之创建一个基于PCL的最小工程

    最近在学习PCL,借助Cmake可省去繁琐的添加包含目录和依赖库操作. 一个典型的CMakeLists.txt内容通常为: cmake_minimum_required(VERSION 2.6 FAT ...