The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,

We get the following sequence (ie, for n = 3):

1 “123”

2 “132”

3 “213”

4 “231”

5 “312”

6 “321”

Given n and k, return the kth permutation sequence.

Note: Given n will be between 1 and 9 inclusive.

Backtracking Math

这道题最直观的的解法就是先求出全部的排列,然后再从结果中找到第k个值就可以。可是非常明显会超时。

假设不能先将全部的排列都求出来,那么这道题的目的就是让我们直接找到第k个排列了。

那么怎样找到第k个排列?直接要找到规律可能会比較困难,可是能够使用回溯和动态规划的一般方法,即使用用例来分析,从特殊到一般。看看通过这个特殊的用例能不能找到通用的方法,可是使用用例分析可能会因为用例选取的不全而导致遗漏一些情况,这道题做到最后就是用例选取的不全导致改了好久。

取n=3,k=5,那么输出应该是第5个排列”312”。

能够发现n=3时的全部排列中以1开头的排列有2个,以2开头的排列有2个,以3开头的排列有2个。

排列的个数取决于后面的数有多少种排列,这里后面有2个数,排列的个数是2!=2。

于是对于k=5能够这么分析

5/2=2;

5%2=1

即将[123]第0位的数字1和第2位的数字3交换,第0位就处理好了,如今数组变成[321],接着指针移到到第1位。然后将第1位到最后的元素排序。数组变成了[312],然后求[12]中的第1个数。

可是这样的求解方法会有一点问题,那就是本来5和6应该都是和第2位交换,可是因为6/2=3,结果变成了第0位和第3位交换,非常明显这是错误的,我们应该使用它在结果集中的下标来使用这个元素。对于k=5,实际上是第k-1=4个元素。对于4:

4/2=2;

4%2=0

它表示第0个元素要和第2个元素交换,这时第0个元素就处理好了,然后再在后面的2个元素构成的排列中查询第4%2=0个元素,当全部的元素都处理好了以后,这个数组中的元素就是我们要找的第k个排列了。

runtime:4ms

class Solution {
public:
string getPermutation(int n, int k) {
arr=new char[n];
for(int i=0;i<n;i++)
arr[i]=i+'1';
helper(0,n,k-1);
string str;
for(int i=0;i<n;i++)
str+=arr[i];
return str;
}
void helper(int pos,int num,int k)
{
if(pos==num-1)
return ;
int base=k/fac(num-pos-1);
int remain=k%fac(num-pos-1);
sort(arr+pos,arr+num);
swap(arr[pos],arr[pos+base]);
helper(pos+1,num,remain);
} int fac(int n)
{
int result=1;
for(int i=1;i<=n;i++)
result*=i;
return result;
}
private:
char *arr;
};

LeetCode60:Permutation Sequence的更多相关文章

  1. LeetCode31 Next Permutation and LeetCode60 Permutation Sequence

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  2. Leetcode60. Permutation Sequence第k个排列

    给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132&qu ...

  3. [Swift]LeetCode60. 第k个排列 | Permutation Sequence

    The set [1,2,3,...,n] contains a total of n! unique permutations. By listing and labeling all of the ...

  4. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  5. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  6. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. 【leetcode】 Permutation Sequence (middle)

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  8. 60. Permutation Sequence

    题目: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of t ...

  9. [Leetcode] Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. linux设置库文件加载包含路径

    第一种方式vim /etc/ld.so.conf 将要包含的路径添加到此文件中退出重新登录使配置生效或者执行命令source /etc/ld.so.conf 另一种方式利用LIBRARY_PATH和L ...

  2. Android集成二维码扫描功能

    文章转载自  https://github.com/yipianfengye/android-zxingLibrary 在具体介绍该扫描库之前我们先看一下其具体的使用方式,看看是不是几行代码就可以集成 ...

  3. python网络编程调用recv函数完整接收数据的三种方法

    最近在使用python进行网络编程开发一个通用的tcpclient测试小工具.在使用socket进行网络编程中,如何判定对端发送一条报文是否接收完成,是进行socket网络开发必须要考虑的一个问题.这 ...

  4. PHP7安装Memcache+Memcached缓存加速WordPress教程

    PHP7安装Memcache+Memcached缓存加速WordPress教程 2016年1月19日 6,691 Views 生活方式 PHP7最显著的变化就是性能的极大提升,已接近Facebook开 ...

  5. java主要集合类的数据结构

    1).ArrayList  ArrayList维护着一个对象数组.如果调用new ArrayList()后,它会默认初始一个size=10的数组.  每次add操作都要检查数组容量,如果不够,重新 ...

  6. 安卓设置AttributeSet

    XmlPullParser parser = getResources().getXml(R.layout.textview);    AttributeSet attributes = Xml.as ...

  7. C# 统计字符串出现的个数

    string str1 = "123AAA456AAAA789AAAAAAA1011"; string str2 = "123456789AAA23456789AAAA3 ...

  8. 深入理解Three.js(WebGL)贴图(纹理映射)和UV映射

    本文将详细描述如何使用Three.js给3D对象添加贴图(Texture Map,也译作纹理映射,“贴图”的翻译要更直观,而“纹理映射”更准确.).为了能够查看在线演示效果,你需要有一个兼容WebGL ...

  9. 用C#在Visual Studio写Javascript单元测试(Firefox内核)

    引用nuget包: 注意:Geckofx45 nuget包必须是最后引用,否则初始化会出错 编写JsRunner using Gecko; using System; using System.Col ...

  10. EF入门

    1.(安装EF)右键项目