在知乎上看到的这个问题,讲讲我爬取过程中遇到的问题:

1.循环爬取其他页面,在其他项目中用循环一般可以搞定,可是这个,第一页和第二第三页的表格是不同的,所以要重新写规则,我懒,写了第一页后,就不想在写第二第三页了;
2.乱码问题,我用request爬取,遇到了乱码,后来强制改为utf-8解决了;
代码如下:
 
#!/usr/bin/python
# -*- encoding:utf-8 -*- '''
源网址:http://hz.house.ifeng.com/detail/2014_10_28/50087618_1.shtml
项目来源:https://www.zhihu.com/question/26385408
时间:2016-05-19
''' import requests
from bs4 import BeautifulSoup
from pandas import DataFrame
'''
我想去掉面积中的那个㎡,可是报了
UnicodeDecodeError: 'ascii' codec can't decode byte 0xe3 in position 0: ordinal not in range(128)
这个错误,所以就加上了下面三句,解决
'''
import sys
reload(sys)
sys.setdefaultencoding('utf8') def get_info():
xuhao=[]
project_name=[]
project_strict=[]
project_sale_num=[]
project_order_num=[]
project_sale_area=[]
project_ave_price=[] baseurl='http://hz.house.ifeng.com/detail/2014_10_28/50087618_' page_num=1
url=baseurl+str(page_num)+'.shtml'
response=requests.get(url)
response.encoding = 'utf-8' #将requests强制编码为utf_8
# print response.encoding 查看requests的编码方式 soup=BeautifulSoup(response.text,'lxml')
arcicle=soup.find('div',{'class':'article'})
tr=arcicle.find_all('tr')
for i in range(2,len(tr)-1):
td=tr[i].find_all('td') xuhao.append(td[0].string.strip())
project_name.append(td[1].string.strip())
project_strict.append(td[2].string.strip())
project_sale_num.append(td[3].string.strip())
project_order_num.append(td[4].string.strip())
project_sale_area.append(td[5].string.replace('㎡','').strip())
project_ave_price.append(td[6].string.strip()) df=DataFrame(xuhao,columns=['xuhao'])
df['name']=DataFrame(project_name)
df['strict']=DataFrame(project_strict)
df['sale_num']=DataFrame(project_sale_num)
df['order_num']=DataFrame(project_order_num)
df['area']=DataFrame(project_sale_area)
df['ave_price']=DataFrame(project_ave_price)
return df if __name__=='__main__': page=get_info()
print page 我用pytharm跑出来的结果大概是这个样子的:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoYAAAIqCAIAAAA2Nhy7AAAgAElEQVR4nO29a9clt3XfWR8pEzvjM2NnNJGtW2LHy7GXvbIipfnmqbWSSCOvJckdj0VdEl9kmV0WRfaF0gwlNSnrQuvi+CmypXY3GUnWjVJi2lZb7FLfKFI+S6/mG9S8OKeqAOyNDVQdAAWc5/9bXM3z4KCADZwC/rVRVdjV51/4n1/99t++dufz2x89vv3R4z95+aOv6Fxrzj300EMPPfTQufNPff/BgwfXGu3PB9eac821IfH8U9/fHTVla5pmPJLkfPD9p86fa649ePDKK6/sM+zLHCptrk1fedRiGK+X6VuC0cZrzbndh11v7EwCAAAAwlK91l197eUnfvLyY7v/Xrv16APCtQvnzj/1vQcPHtz/3lPnzz/1vfv3Hzx4MHy8duHcuXMXru2/PXfh2v3797/31Plz55/63v0HDx7cv3bh3LnzT33vvj3nhWv37z948OD+/WsXhs877t/f1Swca9ZiWD6WOcNO0sZdD1y4ti+M9g8AAABwONVr//BR9b8f//1HaKZRkr/31PmHFCaZ2muqItODdOmyqqrvoH+cJO++2NVy4dp9/1oMy3VJ9iqBtnH49tw5/YoBAAAACEj16q2Pvnbro6/+4KOv/v1HX/37R1/5+//3PuHahXPnr754//79F6/u3cuRe/euXTh34dq9e/fv379378Wr589fffGemu3evd3R9/ScQ+Iu65R44dou4/6Q4WvvWgzLpzK9S6BtHL49d24oAQAAAAhO9coP/9sr//ClB//w5Qc/fPbBD6/dv3uLZhol+d6LV88Pynfv2lUitHupU7O9ePX8OUGSFSl98er5neaNonhvTPKuxbBclmTeTtLG+3t3mldrAAAAIAjV/f/5p/e+39y79Rf37Dw36OfObx1WdJ+7d+/e3bvPXTh34bm7d+/du3f37k7q7qrZzl+9euHc+asv3tVz7oqkOS88d3eX89xDDz107vyFC+d3Sb61GJaPBzpLOHfhAjVp18bnLpwbGru7RnhO6CsAAABgGdXdO7fufb+5d6u9G4c7d5595Nwjz965E6n8lLUAAAAA8ai6b/3Jne997O6dWwELvXPn2UceeXb3+dlHzp0bPoeF1nLnzrOPDG9PPfTQQ+cg0gAAAMqhuhOJZx/Z6+LvfOq7sepIVQsAAAAQn2iSDAAAAIA5QJIBAACALIAkAwAAAFkASQYAAACyoHoCAAAAABlQbQEAAACQAZBkAAAAIAsgyQAAAEAWVC8AAAAAIAPCeMn/n8IHPvCBHgAAAAAzCS/Ja7cIAAAAKBJ4yQAAAEAWwEsGAAAAsgBeMgAAAJAF8JIBAACALMjHS77VND8N3LjA5G/hGnQvbDYvdMdXV2615w/6B4CDSeEl19X7qur9VfX+qr4lmNLWz7TTX7emo6r31639MI3dUc/4Zh/pXtgM1e3qauup9mqYaHQLlxHMwmhoPS//ZH3ft/X7Ns1PlaMO7yJnXctY2vO22ttnhl5aVuah9iyq0ae6hYahfwA4HF6Sb968efPmzXBe8v5c75qL0pTavdBop/kwQroXNtIAMAaS57hS+WlzMlzdt89U1TOn/U+bZpSin3bjlb9poSfhLYw8HUwWdu0t0e85vGlLrFp6yCHm0aIuNoe6hFG76xCCdDX6B4DZMJJ88+bNS5cuXbp0yV+VXfeSFXGdlrboaa0KYe8ryea3B84m5PD2BWVmMSz0I7aF4dlV4dazrrmou9ERbSN1+RxzeM/bag/S0mxn9tmGoX8ACIIpyTs9vnLlypUrV/xV2dNLdp7KXfOMon/TCmrdTn9ump8Oa2LPnDLrpbfq6pm6HnLuy92t+u4u2/frTnXNrT61z+h+vKnBioVqOe9XF2/TWmj0ICmnvjUkDkVpeVg8V6F/2myMQsjvS+rqmovkN32mHSw8tbZdrSt9zxstVdf22V61lKPcfRgspK3YXQxNB7I9JpfM/WrGcqulHLra7HNGoX8c/cNUJJ+90PsziybJox7vAjf6q7Kvl+y+ulQfoaKZfbztW3X1vmFw7tKH+WI6iubp+12xhh+mucishe+rW6PktBZqjDPjrXpfzk+bzfvq+hlu9hzzUFgvmcA8zmMcQuuiZ8KtunpfpZXDtd2sK23PL2wprYtpu57H84OzZBbv3mBTrGcU+sfVP0xFPmcvOItMknzjxo2LFy9evnz5isLly5cvXrx448aNMF6yxwmnPELFr5TWbd/W71MecbKtr8760PftMxWxjX2ei7NwKiexhTo278TlwTDluK/TuYetmEnN4lWMKfYLL+UrUlfSnl/UUt5C/QE9v9/d2mNCySzLesN5RqF/HP1jr0g+e8FZpBL02F+VPb1kx+NdO6ZHqFhhYJ2qZ9q+79tblmHDekJaHvVOWNe8IFwT8BaanlkyCw1Gb0BNoV6yU24VNWpkT1pOpHWJc+uCPPF7fp2WTnfBZ163STglR+kN079UW2qcUegfuX/sFTnOXnAWYR7vuqzgXLL28ZItL0HZxsnu9u14+Wnm2V1O6tza38LRjro13Rxi7mOpef6fN6uv/UgPoKkWqkVpV9+pLOTMGz2GzQu398debFr2XvL7LeNfvfBXfzKtOu5xHuUooa7pbtz7q5975reY271m/3ycebArWc87amdbettSl/JmnXGre8qz9+c2F6efzNpjfMkWJTAGlKU3dnWptbvOKO6xO/SPOuLYSw3PsxecORhJvnTp0k6PL126tECSD7dJPDWFO6DpGCy0+AcZWBgZ+mBX4rqS9XzAlt5S3gvy9NtWL9kJ+mcBZ3beAG4YSb548eLuJaiLFy8G8ZIDMVyB5nLaUj8+NwuPlVJ7fryj6bqpeVDJJ6fGikUxT/Cejf4p9ewFaQgvyWu3CAAAACgSRpIff/zxixcvXrx48fHHH8/JSwYAAACOmfCSvHaLAAAAgCLJJxIUAAAAcKZBvGQAAAAgC+AlAwAAAFkALxkAAADIAnjJAAAAQBbASwYAAACyoGgvua2rqqqwL+xatHWKzt/9ykX80DghsyXNuQrAoZTuJWOkRSJUx+ZWTmxKsRMAkCNFe8k9ZsBYdM0mSMeGKqeYH7oUOwEAOZKtl9zWuyXArtlUVVXVp9OqoLo82NZVXddVVVWbYdf2/RHqAuI+aVPsxu77Jtc116x9UltXm82GLPJ6tH1cGh5yGWvFQ4cPv4WWqBZkdr3XmjOpnfsFqdQ52kV7zDx/Tm09RtHqYntDbcaQ4nNUPJsDQc4xrhXkt+B+QZ+Sd0W09VjWjF95OnbRuXoEswQ4BnL2krtmsxtt46AZ52X1wzik6Ve7D12z2TTd9P8ycbR0N1k33S6RtL1va2vbWcfOSGxrZrIy8owecdds6E8mtMvIQBvI1uXTrgU9RqHnD+0NxR5rz7N9GMnmUPAjztr2qaX0F3SVrJ4+kyB7/8rSr0MtoeeqT10ARCdbL7nv+93AUceHoLvKkBuvf4U85eFo6WmvTtP6BOr2qdra9A+oJPvItjOPX+3mL8jW5WyX42yx9NiscuQ8hoWeXRHE5nBYR5NqM/ktmF/QWbJ2uWEt2cTn16GJfq0AIDllesnTHUofkT4aL3nBZK06rNaSm32vcF5p23pPc9Ov0rVtx5fjU7unl3yAvHXNZoa8sV6ykVnJY+35wyR5ns2h8BE8oaWzLnQGkdbWv717TPp1aCI9V33qAiA6fLzkkfW85MFzarW7VsPtnt3dtDe/ebqqbafbRer17m6UFn+XaGySvaU/d/Jb7GQ9+iLW1k/eij6VtcM9TbV21iQzTa9qLMe7drNdKp7t4nuMnD9+8sbcFSZN2p+wm+l0VSy8bTsqns2h4H8LvV76W9AxKJe8Ya4K+ZLtpehDYv656q4LgOgwknz58uUrV65cuXLl8uXLq3rJAAAgU/TdKABMGEm+cuXKE0888cQTT1y5cmU9LxkAf1SHy+mMZkKJNq8L7TF1nQyAY4D3kneSDC8ZAAAASEb4heu1WwQAAAAUCSPJly5d2knypUuX4CUDAAAAadhL8o0bNx577LHHHnvs8ccfv3Tp0uXLly9fvnzp0qXHH398l37jxg14yQAAAEA8Ji/55s2bFy9evHTpkirJly5dunjx4s2bN+ElAwAAAFHRFq6ff/75S4Tnn39+1sL12i0CAAAAisS8l2yoso8ew0sGAAAADod5vGu3gu2zXg0vOThVVRkfhDyeRUWCLX+XGLtqT2MAAKAs+D2ub9686a/H8JIDokqL87O6aQJNMRCO9SlETacmsXbGw9leZ54ERgIAwFzSRIIado9dbfPYYvaUF9SC6qKgjs5yfHLaDDAOXEXzKs4dl7slSyXWz0xlf6oyzte+Xzi6+Y3Vtd7QNusy9hf32Svc3Cw7SY+SdikJTIwwff/zKRfTdnA2SBEJahoNXXOywtmlxGnIElbSBHmjkqPm8SmBLY2WQD/34pUBW1psPJvZ5yjJxpm5C07Y970aqSh3Fo1uJWtb61I1trprmrEDum4vyO7+GewxwoilmQHMdp32SvTlfSwvtl0kuJaZB5wVUnjJWkD7da74itmbnoqcLU9vV6NZ2mOTfJsMs2YsqzoI/jXmJ8m9fmaq0UPXGilz6RaNblvYTcs43Qfw9OkfWwTWNDOA2BYmiGXT8JJM84CzQgov2T3kolOGJLMiR7+i7qnhudqQSzZSZkky60nHwzBjcUszwDgz27qqqs3JSSH3WbwE1VWAIqFsCarL6Oyftq7qZlgr1m8JpO1Ss110/XlsV1vv4sKbNvd628GZIIWXDEn2hEoylUBW+WQ/VfahZ0myYGRKSWbNoPU6W5oB2pm596O6tm2KOGH7QyXZdBy5EhQ30aN/2nrUPs1hTjsDsHeuzasv1f1t21GdVeWGi3z2SOElY+HaE1bk2DzULR6/FVxkuVI1RfU1bR6wTZITK598OWLLmQ0zl3CzY9nC9T47cRyZVrf1rP7R7VmlP5l2MTYo7ZqbBxwzKbzkaZSsdoOsgAnOkBabfgjqKC/Y2qTrEC95Ff/YMFW+/vAX7JUwn0IaH5Uq7/GuOaNbbZ+yOEvH6ez+mQ5Yw0s22qU93qVJtd4udx5wVkjhJa/9ElTL36bJDKeQ2NxWml92keU/e1GMBT1OLMw+VThbujbkzJzemCnj4a6+7xeNbv21n/2B7DjVZYnpH+5x5Q3Nk2YGYNrFv+1lmD0dpy1bQ5LPIGneSwYOqKYaX9nUV0i0FS58S2t0Ci1ramzxs7VobksBACAr0njJQMKmsiPyUVTCKfRYG/0cSfaXw0g4dVduKQAAZAW8ZAAAACAL4CUDAAAAWVBtt9t/K7Ldbl//oS/94h9/+fFnvwsvGQAAAIiEl5f86k/+cbvdvrH5S3jJAAAAQCTcknznwauv+6MvbrfbN3+khZcMAAAARMIhyT/40YPX/eEXX//hL8NLBgAAAKJSbbfbj5x+++f/6zP/+3/5/Fa/r7zdbn/h97/wxkefffNjz73hT08vXf8+vGQAAAAgEtV2u/3nf/iF7Xb76k9+QrX2R6+8+oaPtP/y0ldkZxpe8iEsfqOXvi5M38q1Jcopnl/l88ov3jMGABwB1Xa7/T/+6Ivb7Xbzwc8/ePU1KrevvPqT//PDf+EvyWu3qEgqbocQp8KpRxkfhPRRpz3rshkwNz0gcncZFyKZXDQAAICTarvd/vwffGG73W4+8Lmfe99nu/s/por72k/+8WAvmQ1XlgTLJrMZIkuF4JVS+VELtCV61rvAngWlLai9t1yCVK4LlJzQxoVyquZ+rioE28F+v9Pz2HI6cqcUIV6ySn1KUuL3q/abatWbu17b26UcVs6ZAAJQbbfbR9vv/vzvf+Gff+hLv/AHX/hnD39mS+4o/+zvffpn/u9PP/Klbyz1knfn1yqnVtecqJvP53t6Vxbn1chAD2H/tAmkkS7UZUOwR06PhK2lbM40JnljjAslIlCJkaCUoXZAOWOsBXPknqqdYo3IIMeSSoDxmyphrvqu63r6K3PtUgJClXMmgCBMT1y/7sN/8Qsf+tIPfvSAKu6PX/vH7Xb7s+/9swO85LWimhQQg1bQOUEme+IOeqpmZfGS50qaj2wnwL+6/CS5t56T6y0qzeSAeMlmOcbB5sg99RrLq0uyvca2MXtn33m0pWpvrBbRFqzCJMn/23/98zsPXqVy+6P7P/6nv/vp7Xa7c6AXecl9FnKY8blNxdVIp1+x2VhFN5TSSPRUU1nPVpRhWyuoSYVIcltXBcVmDHXJ29ZV3QzLt2Yp+5E7OYxds7GseLV1VddaLEaaEhu2H1R3udd/ZbZduwwnJ4VcmoFQTJL849eYJ67/rrv3T37n6v9y/up2u/2Z3/t0gV7yQPZuh9PptKkOK9uCygpHCbbJienVrrJftXj+mQc2j2r9K1g/AkqyolDqFYnuh+9O6U3T2Otq23EReIjETFKiwvUDdZHVjKRd+0Z3bSs0FBwj0h7X2+32n/zOUz/73s/8r+/73M/83p9d+PI3S/WSEw3FQ5EdOyrDhpSyKu4sRxBvm1W0Op9yIuF/ZVCSJBejyQEXrjlpt41cus7NsNYiNlNLW/v9yl2z2TS3S7jdBiLh2L2ru//jn/vA5zcffEbOlrOXrD4eYSwe5YZTSm0Z2Pz0KDXFU8k8dXottXNeE6zrynugT77KDcQiLiJ7VUsPuzE0dcQgt9zIbUcn0lKX2Ye3V+hV+VKAtcdol/IkKh7vOmO497h+8Opr/+y9n/WXZK6WNumtHL7q/cJQntMc67MaAqPmoQeyf7JfqXlk79apYbIcRsWnokyuG+yY46Kc9/VUQr0ENbZ+VxA/codUuxM5HWcek2T8s3OdZiT7K5vtmjLlOmeBOCBe8voIUmGIKyu9Rjr9XBGdZhOdGZY1IQY2s4XmsCkAAJAV4SV57RYdCYbHKQsMlWqqr7b8KrbCaTaaaCsqKk7dXd1CAADwB14yAAAAkAXwkgEAAIAsgJcMAAAAZAG8ZAAAACAL4CUDAAAAWQAvGQAAAMgCeMkAAABAFsBLzg6fV2ZteYK/bisUuO4rv7bXrG3mGSkJLAQAgLk4JPnx//Tly//Xf3v8P30ZXnIyWMHw35qj8t4GxFNN58p/PpJs/JvYQgAAmEu13W7/yML169ev/u71z33whau/e/369etXr15d6CWvunWvUnkZGwfP0kWfb4NUweZ3Xh/Ew0eSqUmsQq+KHjS0yE2uF+9xbQRMNcrR97je9YdH/2iH7YpK3atyuzRTh4jOZkuZVoCzgUOSP/P+m3/xx9/8zPtv+ksy9ZKbEyXySeqpRom7UkhMFZtgxJZAQc/YugQ7g9gjmzoaY7OwsnjJCczzZjfxjudkt+pIWcikP4r5Hhhtp+XQeEo+/aMGe+u6zvOogDjbNWXcbDaDJJOWmq0AZwWHJD/93htf/MNvPP3eG4d4ybnE/jQuXrNB0D9WcZ2abSuzt+uuUKytXn+DY8CqrK11bJ8kMNIDW2TcUqLkHhIvWW2jWc5tpgdm9k/bDBGlEveq1K5uTG/a4TvRqn0rwFlhL8k2rb36n7/6zH/571f/81e32+1iL3nisIiqB9DWVTHrP7JasMoqHC4oesU5lIdYlRKnJMspWUqyllzI2XqI4EmXI6d9W1d1bYvq6u4fLjZ6ol51X2btHGZVki0tzTzCOwjPJMnf+c53Xnzxxe9///t37ty5d+/egwcPHjx48In3XPvs+5//xHuubbfb69evL7yXvGN1J7UEx0MQDMOdteUU1NqW06lSNns8K4qB6ul6esk0TwZwJ+XqI2UGsSS57fu+b9t2SFC11Kd/qHOZrldd7RpWsBWLLC2Fi3z24CX5S1du/vG//7NH6z9/8t3Pffr3/urJdz/3aP3nf/zv/+wvP/61hV6ycaqtQwGa7K+OttVXmz45c9oqFdJt2IwPhW0t2inAacybAzknsxgp/sRauO5sOf36p61X7FVXu7r2ZHrklP78U4LZCnAGYCT5pZdeunv37pc++vzH3nn6yfdcu3r+q598z7WPvfP06h/85fYfl3jJ6mNVyRdilOGd/WQni6jhF8peso9QGV/Jsi2np9c5Z40+rcsAbQpedaQsZNKc2cvCZtv1cpiR690/6/aq3K6JaeGan6MKcCFAcHhJ/sEPfnD3zr0vPPL8k+967hPvfu7Jdz33xea/f+XaV5fdS9Ye8U8uigW9VyJL8phuaIzsF9J0+sF24CzZo8IfFbbJtquKVSz0oNVvILbrjpSlLHsJqiU3T0k5U39shge1aP+wumUsF6fsVY92aanGO0/asjUk+QxileQf/vCHd7p7n/39v/r4O08/+wc3Xrn/qvAUGHbvOhxZEamc2OTH9pVwFPuVsyjPYiNhk2GbJTkpMQAA8EiS3HXdj16+98yf3Lx7+/5WfDAbu3cdguC6sV/Z8rMS7uMdynrPlsOW71NXEFQz2G9XtxAAABbgkOS7d+++9tprP/7xj/0lee0WAQAAAEXieC9ZBV4yAAAAEA9p9y4KvGQAAAAgEoiXDAAAAGQB4iUDAAAAWQAvGQAAAMgCeMkAAABAFsBLzgjPl2Xpa7WVZd8MNZF9v3mJlfYScnvZN0aTAQAgHvCSM4Ld40L91rbHhY8kCzWy6T47bKwlyf7bgGR+0QAAACopvGRll+k192zNfMdYVlZlP48eon5ghcpTzGw2CAo3lj+/6QfhWaNqXr7CrOzHnPO5qrNsj2sTbStqvahx5PrNJIY9+h7XKfrVCANp7Z+hXYyFQm+A4yaFlzzFOVFjsiSmrTebrKPQOuVQ+NaQW2chzq88NVut16e6GCyQZP+j0qKEAVpxpMxk0p8hDPDCYqYQTV2nC/IwclufmYTYk/hSfCemXCQoo3/UdpkW2nsDHDtp7yWvFpu9a5o258DwhtqxEugUSPZDv1SS5c+GJAu1x4ZeglAb1rXQm67ZKFGQyvCNDomXbKFtlFIsI9c6mE17bq+wOuYTB1ptl2ih1hvg+El2L7mt11uB2V2eZivJrKjMEkv2g+ExO9XdKNnnIoBanl7qBJX1vGTJid0wOTnJ9FSlGGEQDzdbi2jMjVx5JjHtOe3buqprEjExJrY+mT7r7RIsLCVqNghGWi95ldu5w3pRtpK8Y5Q3H6VUDxE+2CTZqJR+pobZrGVtntv2Q3A2Yd0rhlnsT9GubZu8H3yYCC3JqlMojFxrVaw9bdsOCSm8ApckM+2yWAgX+eyhSfKHLYTwknesocldezI9FJLvRGeohc3nk1XWJsk+MqweK2Mzw2Z5VGbVzl6XZENwjzMBgReu21pptTRybf0j25OmV10L197t0noDnA2q7Xb7wt/df+fn/ocsye/83P944e/uL/OSa+UG2YpPDxbhJY+fbToqJ86VTNmDdBZCv0ovdbIkO/3mnGjralrZLO/xriCKzLV6WuD1mEmIPV5HBUVrhdA/rnaVclkGQlJtt9tfeeKbv/rxb8l+8K9+/Fu/8sQ3l3nJyqsLq51how3ZnuM2B9eWjSZSPZZdauEzm59mtvnNKRFqZHsvVz3u+14dKmU83NX3faiXoPq+Z0VIHbncTMI9rmzYM71RlKBXW3JTmO8fbUbiLYQkn0Wq7Xb7bz7x7d+8+p1/deWv3/DY19n//tWVv/7Nq9/5N5/49jIvGfhgE84Fbp9NO23f0gyCbAsFrqJ2tkppn2QtxgAAsJPkX3vym7/19Ld//ZPf+rUnv8n+9+uf/NZvPf3tX3tyoZcMfPCRXjabrKBygT4qNUvJsvKSe65/AAAgW6rtdvvLH/v6b3zqm87/fvljX4eXDAAAAESi2m63b7n0wr/++Nfke8n/+uNfe8ulF+AlAwAAAJGottvtGx698abHbm6HJ65VrR1T3vTYzTc8egNeMgAAABCJarvdvv7C9ddfuH7lxt+OAvz2t7/97W9/+yjJV2787S4PvGQAAAAgEsxWIXIKvGQAAAAgBrwkG17yLEleu0UAAABAkcBLBgAAALIg8R7XwI3/dlTOV409i4paDgAAAE/CSzK85EOQt6VcIMm2vTLmSvLicmJgbDRmoGazkcZOAACYRbJ4yX2/zp6t0+6xVVVlvMV138+RSVW5bbt3yaXNrWtxOZHwuTqZlSEHtJO1lF2uFaMPHF37krSQDXpXTJtc26sieZL3qhHgRmjF3kQlgTE66zkLhCZhvOS23mzSx2IqZut2We2MFEOM1T9VR1D9dzyQ5vFJWVBOSpw1pjdpPmq8+q4rRpAHqTksetUUFkmJhjV+Omk6rQLrsKZ5EvfqTku5SFBjK07UeBj1qRoJqms2u5RAvQqKI5mX3DVNu0Z4xAIk2amOxlfqn2MJamlG4bZK5TyhyknDUUiyQjGx67tmo0RcWu6DquWMKVqk4dte8aTFPIl6VYqX7GjFPnuoXgXlkchL3l0ZriXJNYmXljOCeFCdNg5hpZoWaOShfm2ociLBWjL3kIxRHbv8aeuqqjYnJwcN7rau6kaLoGpK16niMHbNxjKahTzJetUmuvQSQVXbXTeqwZIP71VQHkm85GGpZg1J7vu+bceFrBKuN52S3BONNHSx18XS9ifrcIctJx5OJ75ykcbOJRTjIvf95Ne1bXPIglRbj3rUNRubNzncYd009spsedL1qp8ks7PhkCVQr4LySOIld+3J9PjCiidYvovYnspRcZKsimJP5JmWQzPTA4OUkxJnpVlrsE5bZ3qWcvgsJvugL/DufWJtyddc1XZeXut5EvaqtHA93UXm7d+1PVSvgvJI+sT1OgvX7mGQF4J42FRTyGP77JTSUOXEw2aYM3PelDUFt/V4kX3Yg0jaY12b/dNc44Naw8AdH9kSFJnNk7JXtbpoK9R+6prmlMxRt8P1KiiOdE9cd9qNooRMrxNkLchUAqmKGA4xPdZ2OFu4XGOociIh9IBP/owpS5LVN3gOHF9jQeRtIfOOqzqLMN1F8oMdmLcAACAASURBVPDZ4tCSB1eMVuivZQ4XH5VxVLBeBYWR1EsGMrLPKjiFNtVUYetiSwtbTgxkMzwPAQCA3Ej4XjKwULnwOUpNNz70Lg1zSvIh5cRjVo9BkgEA+WNK8ksvvfTwww+/7W1ve9vb3vbwww+/9NJL8JIBAACABJiS/O53v/vpp59+5ZVXXnnllaeffvpd73oXvGQAAAAgAXtJfvnllz/4wQ++9a1v/beEt771rR/84AdffvlleMkAAABAPKrtdktl2Aa8ZAAAACASey/5yZsvPfn830r/3ZRuKsNLBgAAAA5kL8m/evmvfuPjLwj//erlv8K9ZAAAACAee0n+zU9+/W2f/Y7w329+8uvwkgEAAIB47CX5N578+na7ffi5v/l3n/nOdrt977N/895n/2a73f67z3zn4ef+ZswAL1ll7quuQV7w9X/pVnihWbZzAXKZOb8T7PNKt/HGs/OVcQAAWMZekn/50o3tdvueL774609+fbvdvvsL3333F7673W5//cmvv+eLL44Z4CUbqJM4u1uFMWuPc7pQFPsnW6Oc2UfXffYbYZsmbNNBixK+dRZla0IobK02EtkfLoF5AIAzxV6S3/ToV7fb7W9//tu/cuX57Xb7zs9+652f/dZ2u/2VK8//9ue/PWZY5iVre7qusX/vflfZlXYOFjRscbb+MEn2N1tOpHlsjfI/JDE+kkx/C1ahs6FdfcQtgtnR+oBSmJYb8ZXkvtE6cYoXkapPaV1c7WYrFKNdYSBBpuwl+Zeaa9vt9h2f+eZbHr+x3W7f8em/fsen/3q73b7l8Rvv+Mw3xwzLvOR1t9EfzsdcdvNnNYlVX/bAZJIs2GBLEWoUGmiTtwSCp1pVEah5no1dm1xO9VlMujGEV1+EElXJiKHU1pvNvgqPOaFrmimYU9fpZimBmuJg1nXK1U5aoYS6m9q+U+nyzoczy16S/8WfPLvdbt/+9Dfe+Oj17Xb7H5/6xn986hvb7faNj15/+9PfGDMs9ZJXPCF8AqseCp3NBX2dm25kUCWE/ivTu0SIFR6fr4SGGylsBtoDzt4IBVup0Ew2JTNKlGQxOvLhRfZd07RDwsw5oW2arg8XGdqrSqMuGkH5lGmFmqL2YYnnw9llL8m/+OF2p8RvaL6y3W7/w6e+9h8+9bXtdvuG5is7bd5lWOwl1yRiWSrauqqbOHEhqdgYH4xEQbrUP20Z1A80P2ueYLmck7al4iSZ/Yo1TNBpWmZKnXP+gnJKtpK83ohbRljBa+tKWwDf+ZiqW+k9J6ju8lR8uoiJtK59CtuKXcNPTrSVakhySewl+R2f+trrPnT6ixeu/VLzldd96PT1jzz3+keee92HTn+p+covXrj2ug+dvuNTX1vsJfd92w5BvJNH/2zrcWxGcJh9JnSn/vXEeZVzClUbKTbBkI8VqpPlU6j0kOuDqLAXB/RqSbhIypIVR9wyIvigYzHDoq8iyd5zwt5FVkh5Z5bWNaUwrdh/2bVto3YhJLkk9pJ8684rv/3pb7zlo9ff9Oj1N/zpV974ka++8SNffcOffuVNj17/lx+9/tuf/satO68s9pIV0p8c+oJY6No9fSzbIWqKLAxyLYsl2akxsiSrLrv62chDYatwmh0c2gRPAaatyJVSpuMIC9dj27v2ZHrkqzo5nTEntLX+bcpLHFqXlmK2gi5up1pmByFJES+5Vm5wpL9mn87HmF6y0330n/QFSbaJhFPk2HJ87DG+Egz2NFv402l2DJwVCT2QK+26I24Zqvt3gMlS28cqvOcETczUx8W45eyQ0LpoitGK2+pTZ9qjbZDkkggvyUwl06P5q0wP49sD4Wu3TdOqvMmCRNNtUuf5Wf5qmQ1yyYacL5Nk51GRkK+KjJy2y5fsWHnELSP4S1CaDnXabVc6J7C6xbw2laRfzbpu87WTVkyNV9vF9AbIlhRe8hHjnJf9lcYmwLPU0adGmwQ6LXRW5LTTM0NKfLrXJx0AAA4niZd8pIzaZkM4ik1n1cupoIYlcuGGpnrarGaWGyLnEdo4qw9DIXev8/dNYCEA4EwBLxkAAADIAnjJAAAAQBbASwYAAACyAF4yAAAAkAXwkgEAAIAsgJcMAAAAZAG8ZAAAACAL4CWXR5B3YZ0vOufwGi7e+gUAnCngJReJsLVF77cHiFOSnZ/TcHhLAQCgFBJ5yfuNVtfYZlXbHLagHX8XUZHdsjxzCt+uK8k2/FuaG0UFAQi+73Q1hkdUMNPs/UPs8ToqIFq4RDq3CLPN+LufqRkJzCWFl6xGDk8+F6khW7qu5NOf9Qhlv5B+5VnCgroCEqSlmdLWm026eLsHMunPEHJ4EUp0pq7ZmGEEhzxa7AS+h4g9XkeFYyemYy10brHPNtPvfjwzEohBCi85fEzEZdBo5OUjS5GnhrGS7JkzGYtbmhNd07Q0LH2uRIhhvC+SSrIaJdFWl2nPba+jwmLxK+jcoqVYfvdjnJHAgSSJl1zVjRYZbRViRzhdgcq1eHs0knxIS/Nh59qVI8lGaMIDrW7raZ22rau6NqMG7jKcnFi7h7XHeVRY2H6gc4uWYvndj3BGAoeTwkuu1fieaznMR3dByoqQU7rYr3JbuKbGOBMLkORh7fesSrJRTNu2Q8qm6cZu6dq2sVXF2ONxVFi4fpBdZNvvfnQzEghCCi9ZW25ayU9u60KmQT88FWixJC+oKxKHtzQXuvZkesipiCe8Iixc83eRjbvLtlmCLlxHuGhwwNRC5xYtxfK7H9mMBEKRwkuezuLVvOSinnJ14a+gtpw+68A5eMmHtzRDyvGSFVMPUmTl4LaudlJKUypllnA+3rUvwOuooPCXFK6Uvjd/96OakUBA0ryXPL4Esdqy9dEMgFke7VxJ9lkiTkaQluZGt/5DFbMI/hKUduNYK3rKpMo1fQpMz8IcFY/WvP3NG8nMNuR3P54ZCYQFu3eVxE54PIXWllPIlo8kB2kpAACUBXbvKgZjnda2niyvOQsip+aRidzQMC0FAIDigJcMAAAAZAG8ZAAAACAL4CUDAAAAWQAvGQAAAMgCeMkAAABAFsBLBgAAALIAXjIAAACQBfCSS6JS9vSwvaprO2rW27rrvpdMjUlcIwAArAK85JIQFNczA/2KlVv5kBkWz8d22aFaKOeJah4AAMQjhZc8bWdbrbHLtVJ90bvKVvaNq2geQcyEo4yUuWodiopz66kY02+LoKjdjYPvcb1ruzYlVEOYRfc4JWPZ66iQkBCLtV63aSHT0qOZkUAMUnjJSqTurltBkNV97UsdAoIiUhnuXa6z/K0t0flVcNgLCFvONCYdSltvNgVGghqC/i5CifvUNRszFCOfh+shcyyfeh0VkJ2WTrUM/TM2h7OQCUpxDDMSiETae8krRO1W40GGivm6AobcUsZsxoe+cEkOnnNVuqZpywnOGCFe8r5IcaXA2kHiWE7UrarlNNasaeFtPpjVMcxIIBIp7yV3iruckrauqmpzclLKTGincq3WCh4zK8M2JWNVn5YTA8NOTxuKkOSdq1mOJKtycvhy+24Y7hSorau6ZiIdqnmEQoyx7DwqIGafNEzURdVCtqXHMyOB4CT0kldwkft+vHru2rYp6SYeRXCFbR98JNnH23Z61WHx8fWdVyfZMaz9nlVJNopp23ZIMdTUXpU0lhPdojf6ZLB9cH05C82WHs2MBGKQzktu61XOvgjTyhqwkul0f8d/PQUsE0lm65LrLUGS25PpUaQiTsQIC9f8vVVPdZXHcprRbSxca/aceljoygPOOsm85LVOvrYep7/jepjCEGk1sbdrtnBsb1diubRIUA/esHmtC4UDKcdLVkw9SJGVg9u62t1hdaVwlZlj+dTrqLBo89j0R9ds9neOHRbSPIWcCyARybzk9a4Hp/ckin+UQtZIqsesPAvqRYtSv0omyT5VlLdw3fe9cjIWMhMHfwlKu52qFs3koZMGGcvcUfFoye3vsX71IWo9hbT0mGYkEBzs3lUGqkYKH+ifPkpMD/SR7Uj4+MHUhlIkGQAABLB7V6nYVHbZ0q5RWiUSwnw3Tt1d3UIAAAgLvGQAAAAgC+AlAwAAAFkALxkAAADIAnjJAAAAQBbASwYAAACyAF4yAAAAkAXwkgEAAIAsgJd8hMg7hyx45zjlm75zLcRbyACAowFechn4CJUhWvQDLdP27QLZjoHNworbAmUVCwEAICBJvORpl9c1tvaddpQtZF9hEafeULlaJsn+NcbDaaFxRaJ+lS2lRf8JGSZDabt192yf/hnyKDNLggFON9Q2Uzh7uPlnn6+o8wCkIYWXXGv7rSc+DZUqS5sLWWZJMpvi4/7SQw6zeh4+FlLbypDktt5siokENWhHIHuVtk86P4SRpnk8ykk5pBVD27qq6lMmhdrDzD9D249iPgKhSeEl76N79324qKv+HFt0UkFvbAJm01fBuax0H9Spi2HxsZDNnMzCpXRN0xYUnLHv+3CjRm27LRKzT/+oeVKOaHMmoZGPOUmmeTplPgTAJM295LauqmpzcrLCXDRdpXbN5giWipwaySorm8FHklkDgjREwGkhlWH229zYeVVnU5L1tvMXyj79Q8upScTE6FDPYp9C7THnn51sN4XF6ATpSOEl78dP17bNGm7qcH9n06xSfWCo3hhSKot0fxSSbHxVhiQPy5xnUZLNtnOS7NM/TJ62HZeF0zif1D4thdijzz+nfVur0Z7hMAOdNPeS81g6PooB4CPJbKJN52gGNY/TKY+Bj4U0Z0oLl9C1J5vJwnJUOYgka20/OeUWrn36R8qTZG6hwm+9FCD2dM1m09w2Fu0LOhFAElJ4ybX2gOIqbnLdHoUiy24rdRZZibKJls0H9bEhLD4Wqim04ZENPIiz6CUPjG2fOoEsAvv0z+RtK4+pxPaS1dmra5qWpJzy9pjzj7pSX/yUBEKT5F7y9BrAOifgsHRU1EzI4SNUNt2SC+m9JTkBsywc9bsISe4Ku4nYBrxRq7edfwlKz8NfDWh5pteOYs8t+gtOm+Y2Sel63h4y/4wtgCADE+zeVQw+QsVmY71kFuOQFSVZtpBV3yIkGQAABLB7VxmwQmvoqJBTzmCkr6vHQtWCSarxkGQAQKHASwYAAACyAF4yAAAAkAXwkgEAAIAsgJcMAAAAZAG8ZAAAACAL4CUDAAAAWQAvGQAAAMgCeMn5Yrxry76IPGufEJ9ynLtz0KPSvweMN48BAEcJvOR8EVTQ88+eSLLzQENlfSQ5NsLlwnjRIOdJYCQAABxO4j2u0+zsa2xcz++mmzkLvFv1X1ZK2c/GgTQnzZ9e81h3XLa5ICUuKh5QmNE0TQlkUjACN3pMG/p4V3aejt6rSjOUyDpaikdL9b2yCzoXQARSeMlTuJQUc8/u/J6qmcbrEGw1f3ykkc05CqT6p5FIyzHyULn1KSQN/tcBxUhyW282xcSGCjSalIhJRnQ4pTe44MpcUdp4VwJCRY87p3RBW1dVfcqk+LS0qEsyEJmjjJes1sJFZs0eWSNtcqsKFZVqWpRRo/AnLdCWLTb+NRYiyV3TtOWEa4wwmrTGq73hH7nQGO9KfMS4493w5+tTkmLGS+ZbCkkGE0m95K7ZJFmWsQ2Mwk59p0z2FueYfhAcXFbshdqdOYNjmG27QBGOypadV1WOJIcdTW1daQvgem+0dVU3XrEsDUt2xZ6cpOxUqv5airuldcAomKBkktxLHu6VbJomuZdcqiTbxLW3K6uQWZBk9ljqTAsFJhA/Hx/d5womL4ZlzrMqyXoxZm+09ahiDodZs2R/eNe2aSabnvv92F/U2tK+79t2vLVXyEoeiETaJ67916IO4qgWrntR/2x5DpFkmsGnojQIkizkzJSuPZke/SniajHGaBpGq94bJ6d6XY7byetdglMRtcoq31LdxJLcBhCDNO8l78+zRIrMXjX3BSkygyHSarr6wZZBVVBalKckr+IfUxsorM0FSPJAOV5yqNGkHEwEbKxiGsYzvOS21h5+jtuvag1d07Qk5dSrpVIecNZI5CUPS9dpVq2Nuop8Car3WHzuubvIwrFyRaxsq4lGHs/Cg+BThXxJkS2d1+3SfAj+EpTWbr03xr9UyaJvEunlTEXHHvD6y0ub5jZJ6TxbOh1X2iQFQoPdu3Jk1LxevD1c2Z1CH0meVSBNZI+Kgc0q2dpSJBkAAEawe1cZ+ChfpdPPfFbZJupsilO8Y+DUXbaNCS4aAAAgCPCSAQAAgCyAlwwAAABkAbxkAAAAIAvgJQMAAABZAC8ZAAAAyAJ4yQAAAEAWwEsGAAAAsgBecgF47tqxoJBl2VZ8zRdvGAMAjhh4yQVg0yF1lw+fzTESK3cknDuRYZ8QAEChJPOSja31o+477RksrRhkURG+FXazmivbc8tJT+XafSxbior+E3yP62oMxagwxrZQ/5ILontcr9GpZu1Mu0jb+3L34QfBSRYJShshk0IOoUPDYdbFpRSAp/5V9lgRvbeWV5Y18Lmf4+HZG8YhCQwLQFtvNsVcMAYauUrso67ZVPUpd1miBE62dY8SeGmKNmekpITWzsXJ0Nvexp0PQWEk85JTxjBmw8WUMuntcUqgoItz1WiW9B5YV0A8Lzjypmuatpw1nAgjd18kHaE+oVzN6MinJCVtv8r2EPZtLzKmO4hEsnvJKcOMnwlJ7olMUtUUnEubMy1/Ho/ydFXj4bwyKEKSd05ROZIcduS2dTUu1bZ1VddanMW2rurGEbly8kq7ZlNV9SlJSduv1B7arh1m29e7jAB5sYqXDEl247lQPGtF16ZSnpJsCL9cZlR8WleAJA+rlGdVko1i2nZc8h1iD+81S3CYh3u1m6ap9bvSU0pKmNq1dnVGZnOFoLyZCoRlFS8ZC9du/LXWmcJ6w7b8zs+GMKdXPs8aS5Dk9mR60KeIEzTGyOVH66lRl7N7qGz7rHzHg6ndr6VYuD7brOIlK+dglDPwSCTZ+dlIscmkms5K+wJJ7ok2p0GuTu6obCnHSw41cpWDR59YT+nUQSuJ6/RY15CFpqTEqN2rpZHnQ1ASKZ+4Vj2BeA/907poSmHI3q3TmY7hJTtti4G/Hjsz50PnuF2aG8FfghraPb0upD2RrKcw19bDcVM6TUmJWTtpF9N2vAQFBrB7VwGw6iJIDpVS2aO1iXpWkuxsgjMFAAAyB7t3FYC/uth0tLforme9Nm32KSQIckOEr1IaCQAABwIvGQAAAMgCeMkAAABAFsBLBgAAALIAXjIAAACQBfCSAQAAgCyAlwwAAABkAbxkAAAAIAvgJZcEfSdYeBHZSJSz0Q1AMn/H17OlAABQEPCSS0LQIc8MtkT5T8+vgiBfDVTc7iXJbAMAgKgk85Lp1vrxNtvXS+a2lC0RYZsqmsfp3fo4zf5aGAmfK4Ns/XgbRYVACb6jtR5AUUnTkvjqmKPU75L1qhYPw7BmShnMsc8/RZ0JIBFpvOTdWFJPP5oSCqPkISbt/ptSh4CgiFScelFxWQ0zlMxHCxNgq8uzpTnS1ptNgXGflGE0HyW8UddsqvqUEaOuaaZAcZ01NrKl51L26lSXObec7po3RkfeRYSyzT9FnQkgGavES7alhMIWErzgq1JDhGxqyir3AqHKSpLZGkO1NC1d07TlhGKMEMd3X6Q4EtvGUpPtqJS9qtZlzi2nHiktUw4AE+vES7akhMJScvmxSKm/a8tA/chZciW40at4yfFampKdx1TORBz2cratq3FFuq2ruuZjpqruMmMPPSplr1rr2s8tk5fcNRuzZdpiQVlnAkjH0XvJA+Wf/oIrbPtwiCTTcoyvEiDUG6ql6RiWMMs5EyOsME3FtO24wKteKVtd5J4/KmWv2urSVxN2VwybptF6TM1T3pkA0nE2vGRj2BcIu0At6KWRgeqZbelbKMf4KgHCqoBnSzOia0+mh5yKuIMSYeHaNQ+0tWfHDEel7FW2Ltvc0jWbjXIXWc1T3pkA0nH8XrLyxIW0KFYcNikN4jUaB67lg8qSXIx/rFOQbzSZepAiKwe3dbVpbpOUbswpzQm2o3RT4zPWxc0t42Ndm8GNt84/BZ0JIBkpn7hWrwhpSiiMkvUXJ8r3ldUPVDhZl3GBXDnFPg22ugK2NDHjGzGFzMXBX4Ia2j2NS23ZWpdkbrmLG8kpe3Ws6+SUn1uGVMf8U9qZABKB3bvKQNVI4QP90xAt/+oWfBUcZ12HtxQAAPIBu3eVik17qEqpnysXauFyngTIdcktBQCA4oCXDAAAAGQBvGQAAAAgC+AlAwAAAFkALxkAAADIAnjJAAAAQBbASwYAAACyAF4yAAAAkAXwknPB9k4wzUCPmvXOsa32MY+zItbOlO8uz20p3lQGABQBvORcEITQMwNNF8RproapB8pVy18Fx9nS3tLqZBYCAIAnybxkfYt1ZtPbgGh1KVXlu52s4H3SPP5+oaziQh6hInq47as0OFuq2raKhbPY74mc7ZnKEGYf7J60XdseegxH7DGWaR8m61WLhWaACWIP24cIS3EWSeMl785AEi90/03Y086oS4sbvslyqhN0gspwb/H/jGw2HWXLt6maUBGb4vNVKGa1lPZwnpI8zMHxgqSFZ9INZVgfUM7YdjVsUtd1vedYpn2YsFdZC40ZSbBQ7UPzKHBGWCVecoTQ6Na6FHK96DTk1qYxrJxQSVY/yApkK8dH+21lOr8KxbKWOq9RVkUNsVsKoWIqi21vG/Mr61im5azUq5qF6ozEWsj2YUlXZiAUK8ZL3idHGC5sbObcIzPaxJWmGBLe271Ap3cou5WGgNEybRcQOUiy0F1pLJxPW1d1U1jMvlCX10LbjSjD8lim5aTvVWqh2UvUwlTuCsidVbzkgVhuq1X+sz3DZUVhPyyTZGeicLhnXbS0GPi3VDY+J9p6nMmLcZgDSrKl7dRFlqoyy7m9Vq9qFhq9RC2EJIM963nJbR3NbbWdypme4qob19vv79oy2ESILZymGw4uW45Ql2xqPGa1tNebwGbLAH0BM8tzlRBw4Zpve1vPGstmOaer9apNXF0WYuH6bLOOl6w+nGEsS4VAHwwb5VGyMjwPXl3GFJtm90Q11XShLppH8JJ98qSRZM+WluMl6w/8FHKuTnpy2E0oS9tnj2VaTsJetVlocZkHeyx9CEk+i6R84roabuVobzeElkmjrsjvW4VD1jaqx7OUhpVbFrU6Z13yRUNUFrS0z16SlbO1EEHu+3AvQbFtJ5fy5limukXLSderFguNFLuFmooXMGuB4GD3rvUxtND2gf5pSGZvF1q5NKpPNJ2tS2iRs9UH4t9S2oo0FgIAwFywe1eOqNJipMufbUrDiq5RglP7aV1OXYyHf0vpV2ksBACAucBLBgAAALIAXjIAAACQBfCSAQAAgCyAlwwAAABkAbxkAAAAIAvgJQMAAABZAC8ZAAAAyAJ4ycUjvE9M0+m/xlG215Gd9aYEbxUDAI4SeMk5Iu/CMQqqz2ZVdEuQnpM0OY9ze5BwTWfwqV3OE9U8AAAIRTIvWQvEqOwEG2MLVz7oY4mbuDvlxCm3nlq1oCKfo0IhNM1mTEFKXOKZGcrmqRxl5/tdis8soW2Xv9sgmpQTGX22mYzm9vPfJfrkAWeVNF7y7pzjIrqoMaHCYNQ1JW82caIzx2SWUrIpNt01lGxUaJtmqwcaMu/ZliDIthk505h0KCWemaFsnspRAid1zaaqT71mCTWMXNd1TDmR+9WYbZQq99cafFQMVx5wdlkvXvIO3qE9EG4YNG2UqiIj6EpFYA9h/6TabAizrfaKc0xTip9/XYVIcolnZiib1XLUuIkkyqNPZW3TdK5yomCLi7yLhUznIp884OyyTrzkISVStDSzrq45abo46h8ZqrtOJ9hIsbm/anpPVNb4zJbp6a0ejly77bKgCEku8cwMZTMpZzchnJxoBXvOEqq7zJYTD3W2mTzgrtlUg9zWWpxFnzzg7LK2lxzlAlEvdDf0IznkkZGVxinSzhJ6TpJZubUpXBrlk68YfP7MkRLPzFA2k3L2H7q2bUTHkmXvIrvKiYJu3HBfeNOM1bftuEyt3+2W8oCzyopespx+CIYktyfTYyKFXYT6SDKb6OPgCsWyVbOFJFY+n6sEn2+zoMQzM5TNejknp7blX1uK8bV16Th+p9pvyZniSnL65AFnjFW8ZOUeT5SrQv60LskX6fveIiqG1rLerVyIXCwt2ZmeDHo1YLTXX7Czorgzsw9n81BOW48CTx/vcswShgxr5SSX5P2fg9qyrfDJA84oKZ+4rrTBEss3MOvq9RoLmvuc2snmoRlGKZ0lZraK5HIi4VOFs2fypMQzM5TNWjnTpLAXJW6WYK+2zRtVRjkxYWabIUm7RW7Y45MHnE2we1em2BRlliRTvWTlttcVl+aU5S22+MmXDjYbSpFkAAAYwe5dOcIKDOuP+ksRdYt9PGNB2JK5yGqNcgrnwKc2EgAAFgMvGQAAAMgCeMkAAABAFsBLBgAAALIAXjIAAACQBfCSAQAAgCyAlwwAAABkAbxkAAAAIAvgJedO2G06nO83y/tvrAVrFX3NWm0dXkoGABQHvOQCkPfrUD+wOuQjTvK2IezOGyk1z0eSWcvpnwAAkC3JvGR+m/o4cU/UuqbdY6uqKmUjYX4DKiKBhkD2FrlSixVq9LFK/SDXFRYfSWb7J415y1D2cC7kvAw4miwbWBul0hR7MbMjOgZCm9k4e4a0YftqJs+UVMiJAKKRxkvejSxytrX1ZhM8Bo5RV5HBzmQVofpEVaoijiyLkZMeMpZmO9xp7eEY1go2VESDY9t2AEr8n0Qxiw4n1GgaoiX3U+gmJSTUpFNGCmOPrQ+jzC2cAcZsQ+yZFHvfaDPPqWp6kdMVCMmK8ZK7pmnjhKVLHzM1LqyuyPrKlsB+ywozW69T/+LBWmUk0q6gyp0pxURnDDWazBF6yoQOZoIJSxjOaqy5zzA7aQAAIABJREFUhWKPl6wrsibGWp5jm6/AIawSL7nvh0vGNJJcs/Eay0FQFEFfaR6bmMlf9TPlPwZOSZZTMpbktq4KisgXYTTtdaqtq7rRYj7SFMEqrQ9jzi1s7XTJvDJCI5Ocap7JS+6aTbGzFAjDSl7ysHAVX5L7vm/bcVGokLmPSiDr89lkslekiBUz9St6IOtcCvqXQPCMVtN6/c3OkZJco6CjaRr/ba0q1Ka5TVIcdY19GHduESpmk0UPeEwY7tFvmqagUwHEYCUvuWtPpkccgp+DthmupJlvhMqMmq7+2fvJla00W1FsCba6YqDWKLfFsIRtaZaUeGYebLMm6sYjmbul7FnLuUOeuHOLvV4u3WyFeWFBjp25Wg+OjxXvJfd9Ci9ZGQbleMkjFefIqt/6yKQswLb8VN5sGRLInrMKWz9kTIlnZjCb1YexuqbR3MlBlmjKLHvW8JIZe9SFgI3xeNdk874QKDJI+cS1ec3aed0omgupa3pxo7CznWqej0xS11D2LIWiFtQVCfYKg63a2dJ84N4Dyp4wo0l/mUq5paqXTFPoIyl8H8aZW4SGkLeZppqFl6Am64aCyjkTQBywe1eOGFpifFY1ydAem0r5pxgf5tYVCZsM22zIWYkBAMAGdu8qAB/hkSWZwhZFBY/VwsSS7HPBwbZRaC8AAGQIvGQAAAAgC+AlAwAAAFkALxkAAADIAnjJAAAAQBbASwYAAACyAF4yAAAAkAXwkgEAAIAsgJe8PnPfmrXtIuKZwSdFTbS94Lvue8BsGwXzjJTY5gEAwALgJWeBTf9Ysel7x2YdcyV5WTZB2DKR5N7SUZBkAECeJPOSjbguKsG3dTU3nN/XV/j2sdTVs/l8Tkl2FiW7m4I9tkqD4yPJNsOylWRl9+OCzlZzD+cDIRELmcJdkaFWmwG4X9DsH0u7+DAZJcYIA4eQxkvenYSzQq0txqhrPNOP7dy26YqPQtuUyUifK/Y+XwVBFVr5qoK2NFs91mIEqZGS8mZSkiFQ8UG09WazK3AXIGpfSdexeSxFrDYDML8g6R+2XabNU3lSS8ERskq85NhjQy2/pHBnVF1UjaGZ5XRBWW01Gok2k3yKdTT1YFiVNRINm316NRdSRRY8GDke8PzSmpZpetso5Vry6AesPwPsTRT7R2sXnRV9WgqOjVXiJbd1VddsvMYwmHU1iSK1LcRQCJvAqJlt6hLqs/NPmyUV8Uoj4ewxOSVjSW7rqqA4oiEvtXduJBEh1a205XFYlXYGUH9BoX+0dnFxJ31aCo6NVbzkvu/bdgjrHWH2MYaBEo8115nOR2B8NNLnW9mVtGV2fpBrD45q8LKmZU0xt1nCSfKw7k3uAyuupC2Pw6o1ZoC9Cfb+0Vxk8q1vS8GxsYqX7JN+CMayVbIF8+V4+ny2Q2Z969QnQ8ZUxRXsTCl7qjtu89RZS4xvMybfc1Un3MJ1155Mj0apOqYKFZ+HkMMM0NZVfWrvH61d1DbfloJjY6V7yeOpGd1LVv4owUumciJ4fqwIsYUI3wrl0Gy0HKdyR8JZhdGoEpQ49riIwqQ5h99KNgrcFcrp0RwvOeUMwPyClv6h7VrWUnBspHziWrnam94DCD5ESF3Tiwn5TnI22VCFUNBdOd1fsNmvbFrLivQqkmzrItUq52VHDiiv0BQ0D4d8Caozb/oyQqXnYbVttRmA+wXZ/jFv5LGP1pDeAMcPdu/KAh+fz+cQKj9UhwyZp9mMDM4PC5pzODYzbFXnrMQAALADu3etjyqEsprSo2ZVIX8WymTNEAyOrX/q1QP7rdM8KDQAIEPgJQMAAABZAC8ZAAAAyAJ4yQAAAEAWwEsGAAAAsgBeMgAAAJAF8JIBAACALICXDAAAAGQBvOSsEd4hZrPJr9v6fyu87+tvVUDYGo1E451jvIIMACgOeMmZMmuPCx+NtO2t4b+lBv2cTO18JNlmFSQZAFAKybxkEnJtt6lrlM1btbqm7bSrnHe55pnrJR9Sjr+XnJ4FXnKf/LphLsp+yAVtYhxoR2tuM2hjTvAauUqmYctrlcj9SlpBf1OaYrTrdmKbQd6k8ZJ359x0qg2aGSkyY6Xt+T7FCe+6QgS5cuGZZyyNli/X3lt8ULbqcO222iO0mtostz0blMBAXbMpZCKernaHgL4LizlRIiZVdcvMCT4jVwmY1TWbqj5NGn7RbMUp+U25FNquUgJxghSsEi85dow0yyluxgwvBqeuUCka020iauiZLO3Gv+k1j62xEr3kxNcNB1FMBL5Q0ZH1UK37uML24qwjVz2qrfceZ9KIyNZIzPQ3pSn7dkGSwcRK8ZKruokYd4w9xdWL0wKQNdLIaXwQyvRJt1Vh00JHS0LglGQ5JWNJbuuqoPspoggtLXLTdOKcII/cXQeenGzGVeG6ZiMdRsWMhUxDMdJfeWzXSjaDLFnFS27r8fyM4jBzk0VpLrJN9nwk2VN6bem2AtU/EzugakWeXjLNky/FuEmhJXlyHO1zgjhy9wV0bduM5rTtWGSaax12kYON46yFSFbbldxmkCureMn68leU28lmmW1dxpw3sthLpvrqLMcpyfTPlN7naO2ChpQhycVocqiF630BivxY5wRx5MqXCEl61SqiDnss7SrlTACxWMVLVv5I5CWXd6LblEaWSVmBbN+yZQraL+SJhLMiQ6FLUGJF0srxjVS39hCT1Qfadgu4ljlBHrnDs2E99zhV/F41WkFrv221R7+YKPBMAJFI+cR1pT0Ivb9tFPwEpHX1hUqy0yns/ZSber1CIULOTCTZ1ooxUeiurODeA8qfIC9B6a/9TAvWdE4wV3uZp6j0UpSyY4sb0wr6m1p+Zb0h6WwGuYPdu/JFUEr6pyE/bE6bjnpmtkl7Atnzv5iQ0wEAIGewe1emOMXGJpaqd0hdRgNajlPmqSjG1j/WVGqVs6UAAJA58JIBAACALICXDAAAAGQBvGQAAAAgC+AlAwAAAFkALxkAAADIAnjJAAAAQBbASwYAAACyAF5yGRz4Zq2848fcihK/5jv3nWO8hQwAKBR4yTlScVt/2Lb4kFXK2Emjt+z4YWT2tzAxNgtt1xzYKgQAUBDJvGQtgJm2OWz4XV31YGlKZQVtJcxqDxVj+q2zHJtEsapmHCVcIqTB53qCvWpJZqE/yu7HBZ2ZQfa4trV99sj1Kice9m3KzWC0Zg7dwqmcck4EEIc0XvLunFRiTkwxybsuStgJdTgMk4cat6Uc/JXvEKFiNdj2p3xgDGZdDdAGZinJSvyfcs7MSUm65mS5KLNtXzByfcqJh9IFSkiqvV2bfUcNPUY1WovBM4WNLuNEALFYJV6ymizFJ1+KEZtZiXxWYJwVfzlhZZUqMU03ZJt+1dvlLZkkqx9krVW/9byaWZlUTt3BBI2XTIs8ZORay4mHLVpz1zTtYI4t+qztWGjyWWedeMkDqrscEBrQrao2JyeFTHu9RT6pXgpHyQV6Vk3TBf2OilOSqQyz3+bH7uQs5UoxrHjQti8buc5y4qO56ydNpznHzbAsrS/KM15y12ywdn3GWdVLjuIim3Xtx0bXtk1JF6CsnMgeqqCm/vIpF+JfaVh8vGT1q3Ikue/7glyjCP6cVswBI9deTnRUB31YzFYkWYkHPV038PGSN01RkxSIwJpecltHOvmOalHocAfXWQ7riBv67SOK8aBXA7YrDEOSk/nxh1HKmRlh4dprtPr0z0ojXbnl3fd937Un0wNn1cmp3mNOC23r3ODMsKKXHG/YmE9SjA+klPIQzYi/UvYWdfSRWyO/nG7T5qjYDHZKsi1bBiiSZkzrGTMpzEGKbGv73JHrU05EVLuMm3BjR02mCF7y8CcUGaR84rqquLMwNKSu6QWDks52HxWpiLO7uEyb4goZ/O08HJ8LCMMz7nOXZOENmpwJ/hKU+a6QOHLNScOrnFho73KqHdJpN4/Hv9RWmBYOSQWdCSAK2L0rR6jSyJ9tKUa6LFGsfykUIlcalsqOYF7mkgwAAAbYvStrnLo7S6tsciXT23XOKDMezqsN4atkRgIAwIHASwYAAACyAF4yAAAAkAXwkgEAAIAsgJcMAAAAZAG8ZAAAACAL4CUDAAAAWQAvGQAAAMgCeMkF4LPFh5DB+ZVnNuHtZwAAAIcDLzlfnFtTObf4YEuj6Z7l+JcZFro5ic08z64AAIA8SeYl61Hald1hI2zqqtc1bYNb2P6xsiTTbDTDXNm2VWH7Kpna0XbNyp8nyv7MBZ2aYfa4Zjanto9TcTd8Yk/q8a7NNtq215shTCPzK+tzFJ8CziJpvOTdiaruCz8MoPDRmYy6lApKiYA34CnJRv65Qtt7+5eeop6Ao5BkLep9KTHKJt0YAgMvLOZEDcFQnwrjtK03G6tYEXsSj3cy20zhoLqu62lLW+YoNgWcUVaJl6yGIAsVddVWV5HxkgWNVIXQJ09/jNEXjkKSFYpxkELFSzZH5al1nHZN09q7x7Tn9grj3VJL2zRdP2cuKmZ2AlFZK15yW1dVtTk5iTIVGfK//6NrNmVdhzq9ZPlPmmjL4JR2z0uESNDyj0iSdwOhlKihEQRvr+z8ON35mHZJptKefryz/WBET95nVH5nSDLgWcVLHsZY17ZNjPNQP7mH2zubJkpl8VgsyYYMyzoqq5eP6ifAaca6Fw2HUsxsHFqSdS/XHKfDoq+/JLdsOXHh+mHvIiuYbYAkA55VvOTYi0uWMtX18hIIIslCfjXdR8nyEbYj8pJ3lDIdh1q43hfALw+M47RrT6YH4GxD2m5PovHO/HZtracwLYUkA55VvOTpOYc4D7bQRfK6LU+R+Zd/2Azqn6wHafvA/imUv6IDWumuv3/mXFEkxCZO+TFp4GGKrI77YZHXOk6FW+2cPYnHu0NcuZa6jwJnlpRPXCtXutOLAcFHDalrSirsjF8gPLL6Cp8Xy20a8Zvrr5cgyZa3Y3InyEtQ2rtClaKltDfGXhpWpem7Q6Y9Ccc7M9tQ94O0lB7FlgPOIti9K1/mCk+leMkV5zH7/+kvaQnET7jy8D8EAADyB7t35YvsvFI31/ankCjXYjtELjASsyyEJAMASgReMgAAAJAF8JIBAACALICXDAAAAGQBvGQAAAAgC+AlAwAAAFkALxkAAADIAnjJAAAAQBbAS84On3dqfd4wtmUWXuSlObEpBwAAJANeco6EFUJ/SR4/s3uPONOTyfNYkbxzyKzdRQAAYHWSecn61vHT9r6h93RlNg4OsitvXATxcCooW46Q2alntPCK87nlbLGR2+jMnyfKyVvQZseBxpc5cvXdoYdwjf7zxnqBHWxzXaWn0k34lW5Ukso5E0AA0njJu/NrPLWU4CiBR8kQYbWfwk1N577yZW7MFQxBknu76Pa6ZrNCyxZOv2XlXC08MUchyUpwpSgR0qIQaHyZI/fUEmHCd95o683GjFBspkSBzHVkRmLyjAGi+q7bC/JwKpRzJoAgHFm8ZLPk07ARXqPhoyg+Kkj/7DmdppUan6mQ05z+ip6Ao5BkBSEeYV6EGl905MperjxvdE3Tmr6qmRIPn7nOYn/b7CJFK4El8521QAxWiZc8Xfh1zSbWwsz+TI4n/yEJ5SWz2QRJNkSXCjCtjh6e3kuWLfQ8JFfausr6JotOhPGljNxai1noO2/sPFNVgGlKTGxyW+sBJGke1V3enQYnJ4VcmoFQrOIlT3dKNk0TRSbVyOZHJ8mCcLLerewlL5ZktdLFbVmMs1LhiiHNdcNB5HuqGoQeX/o91nYcxPodVmneGJaK6Yr6mpJs1s3l2bvISvaubeNMkCBbVvGSFdQVmlAoN2LCLazFJaAk0w+GCNkkmWZg61Kz2cpMzxF5yTtK0eSg40sbucYXem8I80bXnkwPye0eJyEpcSHWMu1ift+2TnBrD+TOSl7y8GdwRVYfhtgtA6kOc66KPEMwZIe1F0V0/FP2jH1Emi0tsewJVsmZc0U5Qa3ilB2hxpcxck/53pgxb1CfeBUvmc5INA9JmZ4Ew+NdZ42UT1xrV6hDUtizTX9xYj9qy3gJakFOVh0Nn7gn0iv/2XPiqqbbvGQq7VFhLfTPnyf8+zK5E2R8cSN3SpuKJvMG70SOPak9wJKiZ425jp2RmPnQbMh0KmQ8bYEIYPeuLPAUDJpNkF413aayxoE2MwTzqBgL5YRC7gfPQwAAIDewe9f6+KiFrJc2UVTFmGqw/Fm20JD5BDLMWmWDzZzYPAAAmAu8ZAAAACAL4CUDAAAAWQAvGQAAAMgCeMkAAABAFsBLBgAAALIAXjIAAACQBfCSAQAAgCyAl3yECLuCsInq68VyUQAAAOIBL7kMhG0x2I1BervQ2nYRyUSPje1HbHuAzNonBAAAiiCJl8xs3Rtt32l+m+BiIsI7cUoOdX9tkqym+OhxMrVjDfbPnyfKiVnQBtZhxinXdmvJQuQjppwpKU2n6jOJsoN13fbmjtZTlGfeQsR4ApQUXvI+Wmk/BTihoUwD0dG6hnFyJCf/An2ySfKoxJXLsfavPQZHIclKXKNyYvsEGqdM260lt/VmY7t8Nss5Vbsyhb4ZM4kSrmtvDzXCbqHUUnB2SeElG7E/TyPGMLbFGT2e61FBfmxLuNQhtjnKhlrbiNU2C0chyQrFLNlEGKf7Im0ld03TenXPPlP6Ma7WooaIbOtNc9sdclE51rOl4IyR9l7yfvQlGUjaHHJUkixrZOVauLZl8zdgttFzcHr5PofkSltXBUXbCztO1bbzJe8cZpdQqeVMPmjXbJKshNG471W1OTnZjAtyda1FXuQt9GspOIskfOJajXUeW5LNk/2oJFlIcYq0kc3m9a7rIs+1f3U/fh7FnIwRxum+GK7kYQXbS6jGAoa7t5umSe4ljz5/206Vt+04yelRnycLZ7UUnDFSecnKbZcoC2LWusakIzn5fSSZTXQeKNcip0fliLzkHaWcjTHGqf3WVdeeTA9vOTuI9KG6ihwR/1tjdgvntRScLVJ4yerjLF3TtLrDHHYc0br21RzFmW/zaNUP6p+sGPs4l6tLso8x/hkyQDnRmUvGTAk0Tpm2CyXbfUe2D/dDO5EimzKsPvhdn860EF4yoKTwkrUXA5SbQMqfoWi5ulrt5k7JyJJsyyMo1lzpTSN+ni67f4Yc4N/Oy53gL0Gpz0YxJY85h3eKtL5i+3AY3mlWrfW6JoOGZkwz0NQw1kK9pQDswe5dxeApkz6SXOmONVuIjcX2ezLrksIzAwAAFAF27yoDVqhYjXSmqDJcWdaH1/WS+5nXBJBkAMBxAC8ZAAAAyAJ4yQAAAEAWwEsGAAAAsgBeMgAAAJAF8JIBAACALICXDAAAAGQBvGQAAAAgC+AlHxWeu2oI2VZ/x3d1AwAAYC3gJZcKu3uGsAmXkSETVTb2LWE3BpHzJDMVAABik8RL5rf3jbPpOq2rzM2FPaF6LO/eZdv9atZuWWFhzaZiTL/NGeWkK+isC7jzPD+6zaANjt4h9kzdmqZT3a04JAUASgoveR8dtFdDp+zGY/BTtDPqOiUpRzYoWNGyyZtNbm3HJlY+/+uA7CVZiQikxibLm0l/lEGzCMvobuvNZl/FUJekU8QepStT6Ju7FQelAMCRJhKUZ4TRwzHLP41e48rYvElZZW1O57rOqH912UuyQjER+MJGR6ZjrWuadqjDJ5Siac/tFcay3IpDUgDgSXsvWRvpkQcVnVVCx2ZeF5tPaQgw6xALbnRP/OnYrWCtVWunNhQiyW1dBQ8/Go+wgkfjKp40neYcN47ohPTyevKSu2aTKhqj0IrlKQDYSPjEtXlKxpRkevof6YBQtdZTpHvOt5a956g4Pfu1DAtDMUszMSV5WAlXJFmJnM5ftXD2DJGHN02zgpdstmJpCgB2UnnJbU3chWhzFa2Lqf1IYMXJR5JZ/bMtg6dBkGQhZ/aUoskxF6679mR63K06OdXr4vtHtMdn5TsAUivqdmkKAHZSeMnqAy5d00S9G0TrstR+JPgs6lKJtWm2TZsTwK5a20Q6e0lWJKScy8FJAwPc4uFH91jF9LVdXDl79sclUmRXKw5MAYCSwkuu1Sl2P5KGFajAqtwadd0mKUVMjv6oumXT0TFPpbvI/lIdFZ9aVjHsEMp88y7US1D86O60m8fjX+rFC1Ux056h6DSr1s5WLE8BgAW7d5WK4USOibY8hir3eUiyjx/sbCYAABwH2L3r2GDlyuk6G9nGZYVoZnpZaPxpI5mRAAAQFXjJAAAAQBbASwYAAACyAF4yAAAAkAXwkgEAAIAsgJcMAAAAZAG8ZAAAACAL4CUDAAAAWQAvuSR8tvKQN9lwHm4rB+8BAwBAbOAlFwPdx4OVSf8duJziyu7qFVuS/ZuJnUMAAEdGEi+ZbvgbbwtgUrKSUPAGs06HWE0RtEpQMlseNiVlY501FiHDZZ6HgXa95sb7fgtpug20o3v48A2p4m1ptWsb6G+ajksR+rCUGGEgJSm85H280H53wtanYwTRISXcaWmWfKoGtVFjQpWJIKtqBv+iPL+tEnrJTmMWZMiAIs9DGvR3YTFkvCuBk6cr5zHuk717dpJHvm7rzSZBnCWjdjWwXNd1bIq9DxPZDAojTSQoLTbqaeBg6SpiyYVHRzN0l/23sq/6CkUJdbGlBWyUD0chyQrFnIehIiibo/KUCa7oPydwAaOaNlWnWmxrG+IC71JsfZjSZlASae8l03EdIDKrT11tffji26rIcjvLS/ZxeY2SU3rJtPwjkuSyzsMIl877UdnWVd2QWI3KnaYZkrxzPleVZBqHfUzh+zCtzaAkEj5xnTKoN1ty4bduZsmt4CWzii64v/TYw9rhxubTG2bMbUguFHMehpbkaVS2tXqndfdpuA27aZoZXvKwGrymJFtd5J7vw9Q2g5JI5SW3tekc0JRQWEsuZi5kqZTVaZsIzVUjQYbzUTtnpblrsEkp52Gohet9AZW6bLuxiz1d1TYLUiW5PZkem0vQrcxv19ZCCteHqW0GJZHCS1YfZ9kt6NCUUBgla493xbsISALrLNpSZCmlEi6o2uoyfBSSXOR5qLq1h5hMx7u6hjsI8D7NociWC5r1vGRHitCH8JIBJYWXrL4XUG2a2/qbAkGnJ6bkeO9bJcaQT1ZNbRJrUzhB+VZ0kQXjffLnSZnnYZCXoNjxPvbHVPSQT1gtH4sybidvkvQsW7tTpPk+TGUzKAzs3lUMrCTb5NmmprLasdqWWPBodcchyQAA4AS7dxWDob698rAVK8n0WFqgkC4QqEESs2qHJAMAjgN4yQAAAEAWwEsGAAAAsgBeMgAAAJAF8JIBAACALICXDAAAAGQBvGQAAAAgC+AlAwAAAFkAL7lIhDdxbVtt2A5J+baxJ8a712yi8aZy4temAQAgBvCSy8B/+w6bJNtK86nLeUhYfCS5t1xqQJIBAOWSxEsm2/sqCaG3eLVvJVxK/B0WWWlY1RRk26dYQwtZaYyEjyTTdrEKnQ8Rz/mIBNnjWiq40re0Vv7Wd8bm+8wnT3C7p1q06vUuGmYbxkLhKABSeMn76KD97mSstehMaoyYAHRGXVPJbb3ZlB13hUosq7VUwwQxY4uSa6kia55siWpDRTQ4tm0HEO+cj8ikP8rAClMwGadDXeOVs88ldOLL7J2YKoEXpyB2XacL8jDbUAvtRwGQKhKUGBs15JiyBV3vmqY9I6HQbJLMKjf7lXB4Gs1jVVa4sGBT8qWYEzFovGQNc5yeMiEZM5Rke41toxivzjaihdpRAPR96nvJ2rhu6yrmuo3mlpw0XTkzoR3BeTW+7fXV7N6lc4LgZSjJckrGkhz5nA+M7QI3cCWbptuV32jxCtu6qms2FqNuoStPaHOZerSY7/psI1gYNlI8OBISPnHNSmKkka7WNSySHYck+6cYHqSRSA83sgnFHtIEH1hLhIsGamTWFPNQQ3xJnsZkW6uRlPef2nb80nod45MnIFw/qM4uM9tYLISLDDhSecnWARNhqBt1de3J9GBNIZMhB3VeDU0yfERbuq0o4Vu22KjNFNqr5mQPzJ5SNDnewvW+SGWc6nUteTQzTa8ytbS1kiLNNtqx2lEADKTwktXHWbqm0R7vCn1ta9TV6l8VPQhsakSll37r9CapvNESbMcGx1mF7XIhYyKe8/FQndiwJtNxOulV12w2zW2vHkvfq76XC9PCNW9hKZdlIDUpvGTtNYBN00lvKh1IS+va0Wm3qYrE5jVSSVYPsX0WvE/2QDZbJIQLDppTaEVWRDvnoxLpJSh2nI49NFQ25VJljXiedLTHouVuCjPiqs02vIWQZMCD3buKwam1/rJE81BJNnQupdrZZNhmQ85KDAAA/mD3rmJgXVtVgyvdnbVls+Ux6jI+J5M9+SLA2UbaFgAAKAV4yQAAAEAWwEsGAAAAsgBeMgAAAJAF8JIBAACALICXDAAAAGQBvGQAAAAgC+AlAwAAAFkALzlHUr4EbEv3ebnZVmAmbwbnbyEAAKjAS16fimy/RVVQziMfbpTjzNOLUs1+lhODc0gr0lgIAAALSOIl27f3Db/Tq1mXvpturvvKVpzrVhExpt8Kpc39qve4OGAlWc4WG5/GrmuhP8rJm+uZyhBoH2xultiPXiWAo89Y1o9Ku704UxftH3dKmWcCCEAKL3kfQbTfjRXlBGvrzSZsdKbOqOu0tO3d/TXDR4qcVdhUylYCFbnew3WOimBqJhZ6o0QNUiMl5c0ULUoZfEuKIbPEFExp3xVeY5kcxZQcDaEVXChla0qRZwIIQppIUGwk1K5p2tABE82g6yVK8uE5PQuRS/CX7Rwkma03EwuXUEwk0VAxlenI7ZqNUZzPWJaPij0bsK3Q+ue2R4pmfjFnAghD2nvJ2sXfSdPFPN/2dbV1VddcTLV8MASDVUEqJHMFlT18lmdsS6d2ppQ9VnezsnAmbV0liTQYhgiCp4zcRoup6jOW6VG05CTir7VnAAAE/ElEQVQorbA7CXyKtmxfzJkAwpDwiWtVfumKTVi0ctt2vBWV6/nt48/Jf8pfUdXvdXESCveRZLm0qPj02LoWLqGYxZ3QkjyN3LZWIynvPznHMnuUUXJ8tFYslmQ+ARw3qbxkYwh17cn0+ELoU04arrmf3f5LrIsl2Uix+dA22BLUfxOrnc/FxLoWLqKAc7Xv+3AL1/sC9CeeBLG39Y/lqJSX40IrFixcF3MmgDCk8JLVBxS6pmn1r8KebkZdp+opnrGXvMNfBXu7JLPprJesfvb3zmk563qfsiTnYKE3JZ2rI6pDeIjJdJaYtKhrNpvmtl//GEd14vwTHFoX7R+PlCLPBBCEFF6y9uqCcnp1tls+y2mZuqa0fE9tH53wV0qfRCrGVP7liwPW9Uwve/5XDPkLc8q3dcIR5CUobuRO/TEUzYxl6kQaR7ElR0JsxcKXoAo6E0AAsHvX+hhS5/xsS7El9kR35ZI9y7QZaZQfm1n2r2IhAAB4gt27MsKpu5Ud2+GC/Ni+EmoR5HyWzAdk7hWDz1EAALAK8JIBAACALICXDAAAAGQBvGQAAAAgC+AlAwAAAFkALxkAAADIAnjJAAAAQBbASwYAAACyAF5y7qi7fDjz+JRj+1Z4/3huXQAAABYALzl3Zm3NIQiq/5YaQv5V9JhtHbtviXNvEwAAyJkkXrK5Yau+E2zYTVy5zWH39ZW5WazTOVaFx+ZSO4XKR8nmynxAqLWz8ueJcqoWdG4G2dHad5z6j1wSZzhZn2qhc+hvqk12eqcNNsecD0FppPCS97GR+925Z8QHDUtn1KVEYikpxhkrkD5iST/0fv6uU25tIreK+B2FJCvRftT4QXkz6Y8y1JYU4zFOZ4zctt5s9oalHe87NeVCK3bNpqpPtdBTXacL8mBzSVMTiE2aSFBCyO6w0PDgRhzz8qg8IhdV3NKucDgrwILwz71EiM1RSLJC8BilsQgVHdlnnPqP3K5p2sGy9OPdMpvR37Rt1Ijxis2QZDCR9l7yGA20quthsSbWyajU1YSPApkI1uulX4266MzvVNAFYhZb/5wevM8hudLWVc5RQw1MKQ0wnqzj1Hfk7jxuVd7SjnfaD+xvqkVqpjZHnw9BISR84lq7bGzbIWR3lPlIjQmuxi0tZu7bQyXWcF7Zf3u7H8xW4eMBr+siV4u8/MRGLqcYNym0JNvH6W3PkTssgSvylni8W/rBSFZdZNPmPvp8CMohlZdsPdUizEZaXfpSWyEz34ghsTZN7XUn2BAhH6FiRU7405keFWeluWuwSSlnZqiF630Bwjg99Ry5XXsyPVBVnZymH++2WrT0tlby6DbrB5dyJoBYpPCS1YdXuqY5VQdz6KtCo67WeFykqCtQKqtCtorzksejBC1Xyxc8y9UlWb6AEDLnSsRREA/VrT3EZJ9xOmvkjoYlH+/6ygH/m/JCO3n2BZ4JIBIpvGTtEf/dCTc99h/2BGyZuqYXEwo72W0ixOouK8ns4QsSF6SHxfP6wD9DDnDvAeVPkJegPMcpTbFqm9KPKcd7a9wCtvymjNmazbHmQ1Ae2L0rUyq7iyyoryDJLMKBniUkED9axXFIMgAAGGD3rhyxiaWsgkZOW4FsfvZA22dnyTGYdU0ASQYAlAi8ZAAAACAL4CUDAAAAWQAvGQAAAMgCeMkAAABAFlQvAAAAACADwnjJAAAAADiQ/x9TH/tpHQq7swAAAABJRU5ErkJggg==" alt="" />

python爬虫:爬取凤凰指数的更多相关文章

  1. Python爬虫 - 爬取百度html代码前200行

    Python爬虫 - 爬取百度html代码前200行 - 改进版,  增加了对字符串的.strip()处理 源代码如下: # 改进版, 增加了 .strip()方法的使用 # coding=utf-8 ...

  2. 用Python爬虫爬取广州大学教务系统的成绩(内网访问)

    用Python爬虫爬取广州大学教务系统的成绩(内网访问) 在进行爬取前,首先要了解: 1.什么是CSS选择器? 每一条css样式定义由两部分组成,形式如下: [code] 选择器{样式} [/code ...

  3. 使用Python爬虫爬取网络美女图片

    代码地址如下:http://www.demodashi.com/demo/13500.html 准备工作 安装python3.6 略 安装requests库(用于请求静态页面) pip install ...

  4. Python爬虫|爬取喜马拉雅音频

    "GOOD Python爬虫|爬取喜马拉雅音频 喜马拉雅是知名的专业的音频分享平台,用户规模突破4.8亿,汇集了有声小说,有声读物,儿童睡前故事,相声小品等数亿条音频,成为国内发展最快.规模 ...

  5. python爬虫爬取内容中,-xa0,-u3000的含义

    python爬虫爬取内容中,-xa0,-u3000的含义 - CSDN博客 https://blog.csdn.net/aiwuzhi12/article/details/54866310

  6. Python爬虫爬取全书网小说,程序源码+程序详细分析

    Python爬虫爬取全书网小说教程 第一步:打开谷歌浏览器,搜索全书网,然后再点击你想下载的小说,进入图一页面后点击F12选择Network,如果没有内容按F5刷新一下 点击Network之后出现如下 ...

  7. python爬虫—爬取英文名以及正则表达式的介绍

    python爬虫—爬取英文名以及正则表达式的介绍 爬取英文名: 一.  爬虫模块详细设计 (1)整体思路 对于本次爬取英文名数据的爬虫实现,我的思路是先将A-Z所有英文名的连接爬取出来,保存在一个cs ...

  8. 一个简单的python爬虫,爬取知乎

    一个简单的python爬虫,爬取知乎 主要实现 爬取一个收藏夹 里 所有问题答案下的 图片 文字信息暂未收录,可自行实现,比图片更简单 具体代码里有详细注释,请自行阅读 项目源码: # -*- cod ...

  9. python爬虫-爬取百度图片

    python爬虫-爬取百度图片(转) #!/usr/bin/python# coding=utf-8# 作者 :Y0010026# 创建时间 :2018/12/16 16:16# 文件 :spider ...

  10. python爬虫---爬取王者荣耀全部皮肤图片

    代码: import requests json_headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win ...

随机推荐

  1. 用电销机器人让电销企业迈入AI智能时代

    2019年是AI智能快速发展的一年,有非常多的企业已经用AI智能代替原有的传统员工做重复性高的工作,就拿销售行业来说,为了让电销员工提升工作效率,拥有更多的成单,大部分有电销岗位的公司都会把重复率较高 ...

  2. vue-属性传值 props

    props属性传值 1.传具体的值  string(字符串) number(数值) boolean(布尔) 2.传一个引用 array(数组)  object(对象) ----传引用----- 代码 ...

  3. eas之编码规则&单据转换规则

    *当在企业建模中没有要显示的项目的话,则从包更新到系统树然后选择到规则定义,对申请单新增规则. 企业建模--业务规则-规则定义组织优先  多组织有先  集团优先固定值 显示格式PUR ..系统日期 2 ...

  4. 【剑指Offer】33、丑数

      题目描述:   把只包含质因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含质因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数 ...

  5. rsync增量同步标志位详细解释

    rsync非常强大,下面是我用rsync做目录备份时用到的参数: rsync -ruPi -plEt /home/op/photo/ /remote_backup/photo/ --dry-run - ...

  6. 29.es路由原理

    主要知识点 1.document路由到shard的理解及原理 2.路由算法:shard = hash(routing) % number_of_primary_shards 3.routing值(_i ...

  7. jQuery cxCalendar 日期选择器

    简介 cxCalendar 是基于 jQuery 的日期选择器插件. 它灵活自由,你可以自定义外观,日期的范围,返回的格式等. 版本: jQuery v1.7+ jQuery cxCalendar v ...

  8. Python语言数据结构和语言结构(2)

    目录 1. Python预备基础 2. Python数据类型 3. Python条件语句 4. while循环和for循环 1. Python预备基础 1.1 变量的命名   变量命名规则主要有以下几 ...

  9. BZOJ 2956 模积和 (数学推导+数论分块)

    手动博客搬家: 本文发表于20170223 16:47:26, 原地址https://blog.csdn.net/suncongbo/article/details/79354835 题目链接: ht ...

  10. PHP tools for Visual Studio 2013 安装、破解、配置教程

    安装 首先,必须要安装vs2013.本人安装的是社区版,免费的同时功能又全面. 然后,去http://download.csdn.net/detail/liangzehong007/9076855 或 ...