CF735E Ostap and Tree
比较毒瘤的树形DP,子状态难想。这是主要是搬运一篇题解。
用\(f[i][j]\)表示\(i\)的子树中离\(i\)最近黑点的距离为\(j\),且距离超过\(j\)的点都被满足的方案数。转移时新建一个临时数组\(tmp\)保存转移后的\(f[x]\)。设\(y\)是\(x\)的子结点,枚举\(f[x][i]\)和\(f[y][j]\),转移如下:
若\(i+j≤2k\),则此时\(min(i,j+1)≤k\),对于长度为\(i+j+1\)的链上的所有点都可以找到一边距离\(≤k\),因此状态合并以后是合法状态,转移\(tmp[min(i,j+1)]+=f[x][i]×f[y][j]\);
若\(i+j>2k\),则此时\(max(i,j+1)>k\),链上肯定会存在一些点两边都够不到,转移\(tmp[max(i,j+1)]+=f[x][i]×f[y][j]\)。
初始状态\(f[x][0]=1\),表示不考虑子树内的情况,选择自己的方案数为\(1\);\(f[x][k+1]=1\),表示自己本身不满足,但子结点都被满足的情况,主要是方便转移。
答案为\(∑i<=kf[root][i]\)。
时间复杂度\(O(nk2)\)。
代码如下
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<forward_list>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=101,K=41,mod=1e9+7;
int k,f[N][K],tmp[K];
std::forward_list<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_front(v);
e[v].push_front(u);
}
void dfs(const int &x,const int &par) {
f[x][0]=f[x][k+1]=1;
for(int &y:e[x]) {
if(y==par) continue;
dfs(y,x);
std::fill(&tmp[0],&tmp[k*2]+1,0);
for(register int i=0;i<=k*2;i++) {
for(register int j=0;j<=k*2;j++) {
(tmp[i+j<=k*2?std::min(i,j+1):std::max(i,j+1)]+=(int64)f[x][i]*f[y][j]%mod)%=mod;
}
}
std::copy(&tmp[0],&tmp[k*2]+1,f[x]);
}
}
int main() {
const int n=getint();k=getint();
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
dfs(1,0);
int ans=0;
for(register int i=0;i<=k;i++) {
(ans+=f[1][i])%=mod;
}
printf("%d\n",ans);
return 0;
}
CF735E Ostap and Tree的更多相关文章
- Codeforces Round #382 (Div. 2)E. Ostap and Tree
E. Ostap and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 735 E Ostap and Tree
Discription Ostap already settled down in Rio de Janiero suburb and started to grow a tree in his ga ...
- [CF735E/736C]Ostap and Tree
题目大意: 一个$n(n\le100)$个点的树,将一些点染成黑点,求满足每个点到最近黑点的距离$\le k(k\le\min(20,n-1))$的方案数. 思路: 树形DP. 用$f[i][j]$表 ...
- [Ccodeforces 736C] Ostap and Tree - 树形DP
给定一个n个点的树,把其中一些点涂成黑色,使得对于每个点,其最近的黑点的距离不超过K. 树形DP. 设置状态f[i][j]: 当j <= K时: 合法状态,表示i的子树中到根的最近黑点距离为j的 ...
- Codeforces Round #382 (Div. 2) 继续python作死 含树形DP
A - Ostap and Grasshopper zz题能不能跳到 每次只能跳K步 不能跳到# 问能不能T-G 随便跳跳就可以了 第一次居然跳越界0.0 傻子哦 WA1 n,k = map ...
- CF上部分树形DP练习题
本次 5 道题均来自Codeforce 关于树形DP的算法讲解:Here 791D. Bear and Tree Jumps 如果小熊每次能跳跃的距离为1,那么问题变为求树上任意两点之间距离之和. 对 ...
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- SAP CRM 树视图(TREE VIEW)
树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...
- 无限分级和tree结构数据增删改【提供Demo下载】
无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...
随机推荐
- Java中发邮件的6种方法
1.官方标准JavaMail Sun(Oracle)官方标准,功能强大,用起来比较繁琐. 官方资料:http://www.oracle.com/technetwork/java/javamail/in ...
- nginx反向代理时保持长连接
·[场景描述] HTTP1.1之后,HTTP协议支持持久连接,也就是长连接,优点在于在一个TCP连接上可以传送多个HTTP请求和响应,减少了建立和关闭连接的消耗和延迟. 如果我们使用了nginx去作为 ...
- 【hdu 6406】Taotao Picks Apples
[链接] 我是链接,点我呀:) [题意] 题意相当于问你改变一个位置之后. 从左往右扫描最大值.这个最大值会改变多少次. [题解] 假设我们改变的是i这个位置,下面说的a[i]都是改成q之后的a[i] ...
- 【codeforces 716D】Complete The Graph
[题目链接]:http://codeforces.com/problemset/problem/716/D [题意] 给你一张图; 这张图上有一些边的权值未知; 让你确定这些权值(改成一个正整数) 使 ...
- 全球级的分布式数据库 Google Spanner原理
开发四年只会写业务代码,分布式高并发都不会还做程序员?->>> Google Spanner简介 Spanner 是Google的全球级的分布式数据库 (Globally-Di ...
- java 线程安全和不安全
线程安全就是多线程访问时,采用了加锁机制,当一个线程访问该类的某个数据时,进行保护,其他线程不能进行访问直到该线程读取完,其他线程才可使用.不会出现数据不一致或者数据污染.(Vector,HashTa ...
- 工具-VS2015前端开发工具简介
每个涉及的工具库都给出了入门介绍.基本概念,以及在VS和ASP.NET中的用法.这个白皮书完全就是一个非常难得的前端开发入门手册. 具体涉及到的工具库有: 流行的JS任务执行器:Grunt和Gulp. ...
- arp与免费arp的差别,arp老化
免费arp:应用场景: case1:PC通过DHCP申请地址.在获取到IP地址后,会发送免费ARP,目的用于探測同一网段时候存在同样的IP地址终端,防止IP冲突. case2:PC的MAC地址发生变化 ...
- 定时任务为什么不用Timer
在做定时任务的时候,有的同学可能能会用到Timer这个定时任务的辅助类, 可是使用它会有潜在的风险,风险例如以下, (1)时间计算不准确问题 由于Timer是以绝对时间计算定时任务的,会受到系 ...
- SharePoint 2013 开启訪问请求
1.通常,我们进入SharePoint 2013网站,假设没权限会提示该网站未被共享,而没有切换账号或者申请訪问,实在是非常流氓:事实上,SharePoint为我们提供了訪问请求页面.可是可能须要手动 ...