温习一下,写着玩。

import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim class RNN(nn.Module): def __init__(self,input_dim , hidden_dim):
super(RNN,self).__init__()
self._rnn = nn.RNN(input_size = input_dim , hidden_size= hidden_dim )
self.linear = nn.Linear(hidden_dim , 1)
self.relu = nn.ReLU() def forward(self , _in):
layer1 , h = self._rnn(_in)
layer2 = self.relu(self.linear(self.relu(layer1)))
return layer2 def init_weight(self):
nn.init.normal_(self.linear.weight.data , 0 , np.sqrt(2 / 16))
nn.init.uniform_(self.linear.bias, 0, 0) def getBinDict(bit_size = 16):
max = pow(2,bit_size)
bin_dict = {}
for i in range(max):
s = '{:016b}'.format(i)
arr = np.array(list(s))
arr = arr.astype(int)
bin_dict[i] = arr
return bin_dict binary_dim = 16
int2binary = getBinDict(binary_dim) def getBatch( batch_size):
x = np.random.randint(0,256,[batch_size , 2])
x_arr = np.zeros([binary_dim , batch_size , 2 ] , dtype=int)
y_arr = np.zeros([binary_dim,batch_size,1] , dtype=int)
for i in range(0 , binary_dim):
batch_x_arr = np.zeros([batch_size,2] , dtype=int)
batch_y_arr = np.zeros([batch_size,1] , dtype=int)
for j in range(len(x)):
batch_x_arr[j] =[int2binary[int(x[j][0])][i] , int2binary[int(x[j][1])][i]]
batch_y_arr[j] =[int2binary[ int(x[j][0]) + int(x[j][1])][i]] #此处要翻转,rnn处理时是从下标为0处开始,所以要把二进制的高低位翻转
y_arr[binary_dim - i - 1] = batch_y_arr
x_arr[binary_dim - i - 1] = batch_x_arr
return x_arr , y_arr , x def getInt(y , bit_size):
arr = np.zeros([len(y[0])])
for i in range(len(y[0])):
for j in range(bit_size):
arr[i] += (int(y[j][i][0]) * pow(2 , j))
return arr if __name__ == '__main__':
input_size = 2
hidden_size = 8
batch_size = 100
net = RNN(input_size, hidden_size)
net.init_weight()
print(net)
optimizer = optim.Adam(net.parameters(), lr=0.01, weight_decay=1e-4)
loss_function = nn.MSELoss()#.CrossEntropyLoss()
for i in range(100000):
net.zero_grad()
x ,y , t = getBatch(batch_size)
in_x = torch.Tensor(x)
y = torch.Tensor(y)
output = net(in_x)
loss = loss_function(output , y)
loss.backward()
optimizer.step() if i % 100== 0:
output2 = torch.round(output)
result = getInt(output2,binary_dim)
print(t , result)
print('iterater:%d loss:%f'%(i , loss))

pytorch rnn的更多相关文章

  1. pytorch rnn 2

    import torch import torch.nn as nn import numpy as np import torch.optim as optim class RNN(nn.Modul ...

  2. [PyTorch] rnn,lstm,gru中输入输出维度

    本文中的RNN泛指LSTM,GRU等等 CNN中和RNN中batchSize的默认位置是不同的. CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是pos ...

  3. pytorch --Rnn语言模型(LSTM,BiLSTM) -- 《Recurrent neural network based language model》

    论文通过实现RNN来完成了文本分类. 论文地址:88888888 模型结构图: 原理自行参考论文,code and comment: # -*- coding: utf-8 -*- # @time : ...

  4. pytorch RNN层api的几个参数说明

    classtorch.nn.RNN(*args, **kwargs) input_size – The number of expected features in the input x hidde ...

  5. 机器翻译注意力机制及其PyTorch实现

    前面阐述注意力理论知识,后面简单描述PyTorch利用注意力实现机器翻译 Effective Approaches to Attention-based Neural Machine Translat ...

  6. PyTorch专栏(六): 混合前端的seq2seq模型部署

    欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一 ...

  7. 混合前端seq2seq模型部署

    混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在 ...

  8. “你什么意思”之基于RNN的语义槽填充(Pytorch实现)

    1. 概况 1.1 任务 口语理解(Spoken Language Understanding, SLU)作为语音识别与自然语言处理之间的一个新兴领域,其目的是为了让计算机从用户的讲话中理解他们的意图 ...

  9. Pytorch系列教程-使用字符级RNN生成姓名

    前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutor ...

随机推荐

  1. PyCharm中设置console端的字体和大小

    file--->setting,选择console Font,右侧primary font即设置console端的字体和大小

  2. 【BZOJ】1619: [Usaco2008 Nov]Guarding the Farm 保卫牧场(dfs)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1619 首先不得不说,,题目没看懂.... 原来就是找一个下降的联通块.... 排序后dfs标记即可. ...

  3. ubuntu安装wineqq遇到错误

    在安装中发生了错误:Errors were encountered while processing: wine-qqintl 原因是还有lib没有配置,所以再输入sudo apt-get insta ...

  4. [css]解决iframe在ios设备上无法滚动

    原因: safari的webkit内核特性 解决方案: 在iframe外包裹一层div并另外设置其css属性为如下: -webkit-overflow-scrolling:touch; overflo ...

  5. 启动nmon报错while load libncurses.so.5 can not open shared(bit64)

    yum install ncurses-devel.i686 也有可能是软件包本身有问题,换一个try

  6. LinCode落单的数

    easy 落单的数 查看执行结果 60% 通过 给出2*n + 1 个的数字,除当中一个数字之外其它每一个数字均出现两次.找到这个数字. 您在真实的面试中是否遇到过这个题? Yes 例子 给出 [1, ...

  7. 第十三篇:带缓冲的IO( 标准IO库 )

    前言 在之前,学习了 read write 这样的不带缓冲IO函数. 而本文将讲解标准IO库中,带缓冲的IO函数. 为什么要有带缓冲IO函数 标准库提供的带缓冲IO函数是为了减少 read 和 wri ...

  8. 使用 awk 过滤文本或文件中的字符串

    当我们在 Unix/Linux 下使用特定的命令从字符串或文件中读取或编辑文本时,我们经常需要过滤输出以得到感兴趣的部分.这时正则表达式就派上用场了. 什么是正则表达式? 正则表达式可以定义为代表若干 ...

  9. Android 通过findViewById方式创建TabHost

    package org.shuxiang.tabhostsample; import android.os.Bundle; import android.app.ActivityGroup; impo ...

  10. Android 代码规范 code style

    /* * 文件名(可选),如 CodingRuler.java * * 版本信息(可选),如:@version 1.0.0 * * 版权申明(开源代码一般都需要添加),如:Copyright (C) ...