【转】TCP(协议号6)的方方面面
转:http://blog.sina.com.cn/s/blog_6002b97001018fxh.html
第一:TCP连接的建立(也就是所谓的三次握手)过程。
第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态
第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。
为什么A还要发送一次确认呢(即为什么是三次握手而不是两次,公司常考),这主要是为了防止已失效的连接请求报文段突然又传送到了B,因而产生错误。
所谓“已失效的连接请求报文段”是这样产生的。考虑一种正常情况。A发出连接请求,但因连接请求报文丢失而未收到确认。于是A再重传一次连接请求。后来A 收到了确认,建立了连接。数据传输完毕后,就释放了连接。A共发送了两个连接请求报文段,其中第一个丢失,第二个到达了B。没有“已失效的连接请求报文 段”。
现假定出现一种异常情况,即A发出的第一个连接请求报文段并没有丢失,而是在某些网络结点长时间滞留了,以致延误到连接释放以后的某个时间才到达B。本来 这是一个早已失效的报文段。但B收到此失效的连接请求报文段后,误以为是A又发出一次新的连接请求。于是就向A发出确认报文段,同意建立连接。假定不采用 三次握手,那么只要B发出确认,新的连接就建立了。
由于现在A并没有发出建立连接的请求,因此不会理睬B的确认,也不会向B发送数据。但B却以为新的运输连接已经建立了,并一直等待A发来数据。B的许多资源就这样白白浪费了。
采用三次握手的方法可以防止上述现象的发生。例如在刚才的情况下,A不会向B的确认发出确认。B由于收不到确认,就知道A并没有要求建立连接。
第二:TCP连接释放过程。
TCP协议的连接是全双工连接,一个TCP连接存在双向的读写通道。
简单说来是 “先关读,后关写”,一共需要四个阶段。以客户机发起关闭连接为例:
1.服务器读通道关闭
2.客户机写通道关闭
3.客户机读通道关闭
4.服务器写通道关闭
关闭行为是在发起方数据发送完毕之后,给对方发出一个FIN(finish)数据段。直到接收到对方发送的FIN,且对方收到了接收确认ACK之后,双方的数据通信完全结束,过程中每次接收都需要返回确认数据段ACK。
详细过程:
第一阶段 客户机发送完数据之后,向服务器发送一个FIN数据段,序列号为i;
1.服务器收到FIN(i)后,返回确认段ACK,序列号为i+1,关闭服务器读通道;
2.客户机收到ACK(i+1)后,关闭客户机写通道;
(此时,客户机仍能通过读通道读取服务器的数据,服务器仍能通过写通道写数据)
第二阶段 服务器发送完数据之后,向客户机发送一个FIN数据段,序列号为j;
3.客户机收到FIN(j)后,返回确认段ACK,序列号为j+1,关闭客户机读通道;
4.服务器收到ACK(j+1)后,关闭服务器写通道。
这是标准的TCP关闭两个阶段,服务器和客户机都可以发起关闭,完全对称。
FIN标识是通过发送最后一块数据时设置的,标准的例子中,服务器还在发送数据,所以要等到发送完的时候,设置FIN(此时可称为TCP连接处于半关闭状
态,因为数据仍可从被动关闭一方向主动关闭方传送)。如果在服务器收到FIN(i)时,已经没有数据需要发送,可以在返回ACK(i+1)的时候就设置
FIN(j)标识,这样就相当于可以合并第二步和第三步。
第三:TCP流量控制过程(主要是根据接收方的窗口大小确定发送放的发送速率)。
滑动窗口的概念由此诞生。由于数据的发送方和接收方并不一定有相同的数据处理能力,为了避免数据发送过快而超过对方的接收能力,TCP采用了流量控制机制,接收方在TCP的包头里面通告了发送方自己的接收窗口,也就是还能够接收的最多的数据包,这样TCP就不会过度发包而超过对方的接收能力。
第四:TCP拥塞控制过程。
1986年10月,一件事情的发生使得TCP开启了一个新领域,从美国LBL到UC
Berkeley的数据吞吐量从32Kbps下降到40bps。是什么原因导致了数据吞吐量如此严重的下降呢?原来在TCP的控制机制里面只考虑到了接收
端的接受能力,而忽略了一个很重要的方面,那就是没有考虑到网络自己的传输能力,从而造成了整个网络崩溃的发生。从这以后,TCP的研究课题就开始多了一
个方向,那就是拥塞控制。
与上面介绍的TCP的流控比较下就可以发现,流控主要是考虑接收端,不要发送过快,超过对方的接收能力,而拥塞控制则是要考虑到整个网络环境,使其负载不能超过网络的最大承受能力。
为了防止网络的拥塞现象,TCP提出了一系列的拥塞控制机制。最初由V.
Jacobson在1988年的论文中提出的TCP的拥塞控制由“慢启动(Slow start)”和“拥塞避免(Congestion
avoidance)”组成,后来TCP Reno版本中又针对性的加入了“快速重传(Fast
retransmit)”、“快速恢复(Fast Recovery)”算法,再后来在TCP
NewReno中又对“快速恢复”算法进行了改进,近些年又出现了选择性应答( selective
acknowledgement,SACK)算法。
由于需要考虑拥塞控制和流量控制两个方面的内容,因此TCP的真正的发送窗口=min(rwnd,
cwnd)。但是rwnd是由对端确定的,网络环境对其没有影响,所以在考虑拥塞的时候我们一般不考虑接收端通知窗口(rwnd)的值,我们暂时只讨论如何确定拥塞窗口(cwnd)值的
大小。关于cwnd的单位,在TCP中是以字节来做单位的,我们假设TCP每次传输都是按照MSS大小来发送数据的,因此你可以认为cwnd按照数据包个数来做单位也可以理解,所以有时我们说cwnd增加1也就是相当于字节数增加1个MSS大小。
慢启动:最初的TCP在连接建立成功后会向网络中发送大量的数据包,这样很容易导致网络中路由器缓存空间耗尽,从而发生拥塞。因此新建立的连接不能够一开始就大量发送数据包,而只能根据网络情况逐步增加每次发送的数据量,以避免上述现象的发生。具体来说,当新建连接时,cwnd初始化为1个最大报文段(MSS)大小,发送端开始按照拥塞窗口大小发送数据,每当有一个报文段被确认,cwnd就增加1个MSS大小。这样cwnd的值就随着网络往返时间(Round
Trip
Time,RTT)呈指数级增长,事实上,慢启动的速度一点也不慢,只是它的起点比较低一点而已。我们可以简单计算下:
开始 ---> cwnd
= 1
经过1个RTT后 --->
cwnd = 2*1 = 2
经过2个RTT后 --->
cwnd = 2*2= 4
经过3个RTT后 --->
cwnd = 4*2 = 8
如果带宽为W,那么经过RTT*log2W时间就可以占满带宽。
拥塞避免:从慢启动可以看到,cwnd可以很快的增长上来,从而最大程度利用网络带宽资源,但是cwnd不能一直这样无限增长下去,一定需要某个限制。TCP使用了一个叫慢启动门限
(ssthresh)的变量,当cwnd超过该值后,慢启动过程结束,进入拥塞避免阶段。对于大多数TCP实现来说,ssthresh的值是
65536(同样以字节计算)。拥塞避免的主要思想是加法增大,也就是cwnd的值不再指数级往上升,开始加法增加。此时当窗口中所有的报文段都被确认时,cwnd的大小加1,cwnd的值就随着RTT开始线性增加,这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。
发送方取拥塞窗口与通告窗口中的最小值作为发送上限。拥塞窗口是发送方使用的流量控制,而通告窗口则是接收方使用的流量控制。
上面讨论的两个机制都是没有检测到拥塞的情况下的行为,那么当发现拥塞了cwnd又该怎样去调整呢?
首先来看TCP是如何确定网络进入了拥塞状态的,TCP认为网络拥塞的主要依据是它重传了一个报文段。上面提到过,TCP对每一个报文段都有一个定时器,
称为重传定时器(RTO),当RTO超时且还没有得到数据确认,那么TCP就会对该报文段进行重传,当发生超时时,那么出现拥塞的可能性就很大,某个报文段可能在网络中某处丢失,并且后续的报文段也没有了消息,在这种情况下,TCP反应比较“强烈”:
1.把ssthresh降低为cwnd值的一半
2.把cwnd重新设置为1
3.重新进入慢启动过程。
快重传:其实TCP还有一种情况会进行重传:那就是收到3个相同的ACK。TCP在收到乱序到达包时就会立即发送ACK,TCP利用3个相同的ACK来判定数据包的丢失,此时进行快速重传,快速重传做的事情有:
1.把ssthresh设置为cwnd的一半
2.把cwnd再设置为ssthresh的值(具体实现有些为ssthresh+3)
3.重新进入拥塞避免阶段。
后来的“快速恢复”算法是在上述的“快速重传”算法后添加的,当收到3个重复ACK时,TCP最后进入的不是拥塞避免阶段,而是快速恢复阶段。快速重传和快速恢复算法一般同时使用。快速恢复的思想是“数据包守恒”原则,即同一个时刻在网络中的数据包数量是恒定的,只有当“老”数据包离开了网络后,才能向网
络中发送一个“新”的数据包,如果发送方收到一个重复的ACK,那么根据TCP的ACK机制就表明有一个数据包离开了网络,于是cwnd加1。如果能够严格按照该原则那么网络中很少会发生拥塞,事实上拥塞控制的目的也就在修正违反该原则的地方。
快恢复:具体来说快速恢复的主要步骤是:
1.当收到3个重复ACK时,把ssthresh设置为cwnd的一半,把cwnd设置为ssthresh的值加3,然后重传丢失的报文段,加3的原因是因为收到3个重复的ACK,表明有3个“老”的数据包离开了网络。
2.再收到重复的ACK时,拥塞窗口增加1。
3.当收到新的数据包的ACK时,把cwnd设置为第一步中的ssthresh的值。原因是因为该ACK确认了新的数据,说明从重复ACK时的数据都已收到,该恢复过程已经结束,可以回到恢复之前的状态了,也即再次进入拥塞避免状态。
第五:TCP超时重传算法。
重传定时器:TCP 必须维护一个重传定时器,以进行超时重传
算法
测量一下这次确认所花的时间 M,然后根据如下公式更新 RTT。
平均往返时延RTT = a(旧的RTT) + (1-a)M
的权重
RTO = b*RTTI
Jacobson 算法只用于处理正常的情况,但是当发生重传后,如果收到一个确认,这时候就不用这个算法来调整 RTO
值了。因为你无法判断这个确认是针对第一次传输,还是后来的重传。在这种情况下,采用 Karn 算法来调整 RTO 的值
。
Karn 算法很简单:
1)、 对于发生重传的数据段,在收到确认后,不更新
RTT。但是,报文段每重传一次,就将重传时间增大一些(不然重传时间就得不到更新):
新的重传时间 = c *
旧的重传时间
系数c的典型值是2。当不再发生报文段的重传时,才根据报文段的往返时间更新平均往返时延RTTI和重传时间的数值。即:
2)、在重传的时候,RTO 是倍增的,直到达到最大值的限制。如果重传超过一定的次数,TCP 连接会断开
3)、在重传并收到确认后,如果下一次的数据段没有发生重传(即一次性收到确认),则又恢复 Jacobson
算法。
【转】TCP(协议号6)的方方面面的更多相关文章
- TCP协议疑难杂症全景解析
说明: 1).本文以TCP的发展历程解析容易引起混淆,误会的方方面面2).本文不会贴大量的源码,大多数是以文字形式描述,我相信文字看起来是要比代码更轻松的3).针对对象:对TCP已经有了全面了解的人. ...
- 【转载】TCP协议疑难杂症全景解析
说明: 1).本文以TCP的发展历程解析容易引起混淆,误会的方方面面2).本文不会贴大量的源码,大多数是以文字形式描述,我相信文字看起来是要比代码更轻松的3).针对对象:对TCP已经有了全面了解的人. ...
- 【转载】TCP协议要点和难点全解
说明: 1).本文以TCP的发展历程解析容易引起混淆,误会的方方面面 2).本文不会贴大量的源码,大多数是以文字形式描述,我相信文字看起来是要比代码更轻松的 3).针对对象:对TCP已经有了全面了解的 ...
- TCP协议要点和难点全解
转载自http://www.cnblogs.com/leetieniu2014/p/5771324.html TCP协议要点和难点全解 说明: 1).本文以TCP的发展历程解析容易引起混淆,误会的方方 ...
- 【转】TCP协议
TCP是什么? TCP(Transmission Control Protocol 传输控制协议)是一种面向连接(连接导向)的.可靠的. 基于IP的传输层协议.TCP在IP报文的协议号是6.TCP是一 ...
- 闲来无事,写个基于TCP协议的Socket通讯Demo
.Net Socket通讯可以使用Socket类,也可以使用 TcpClient. TcpListener 和 UdpClient类.我这里使用的是Socket类,Tcp协议. 程序很简单,一个命令行 ...
- TCP协议
TCP是一个面向连接的协议,在发送数据之前,必须在双方之间建立一条连接. TCP首部 TCP数据封装在IP数据报中 TCP包首部 下面简单说明部分字段的作用: 端口号:通讯双方由IP地址和端口号标识. ...
- TCP协议的三次握手和四次挥手
暂时需要的信息有: ACK : TCP协议规定,只有ACK=1时有效,也规定连接建立后所有发送的报文的ACK必须为1 SYN(SYNchronization) : 在连接建立时用来同步序号.当SYN= ...
- ZeroMQ接口函数之 :zmq_tcp – 使用TCP协议的ØMQ网络单播协议
ZeroMQ 官方地址 :http://api.zeromq.org/4-1:zmq-tcp zmq_tcp(7) ØMQ Manual - ØMQ/4.1.0 Name zmq_t ...
随机推荐
- 「COCI2016/2017 Contest #2」Bruza
「COCI2016/2017 Contest #2」Bruza 解题思路 : 首先对于任意时刻 \(i\) ,硬币一定移动到了深度为 \(i\) 的节点,所以第 \(i\) 时刻 Danel 一定染掉 ...
- setResult()的调用时机
今天遇到这样一个问题,我在Activity-A中用startActivityForResult()方法启动了Activity-B,并且在B中通过setResult()方法给A返回值,由于某些原因不能在 ...
- Redis 锁的实现方案
开发中不可避免的是碰到并发请求,在数据严谨性的要求不高时,我们也不需要做什么处理,但如果碰到数据严谨性非常高的时候(例如:用户金额,秒杀产品的库存...),我们就需要慎重处理了. 解决方案多种多样,下 ...
- linux常见命令集合(下)
1. tar zcvf backup-$(date "+%Y-%m-%d").tar.gz demo01dir 常用命令集合 echo helloworld date “+%y-% ...
- python输出字符串,UnicodeEncodeError: 'ascii' codec can't encode characters in position问题
2017-06-28更新:换到python3.x中,编码问题减少了很多.这篇博文不适用于python3.x http://blog.sina.com.cn/s/blog_64a3795a01018vy ...
- Hive伪分布式下安装
本安装过程只作为个人笔记用,非标准教程,请酌情COPY.:-D Hive下载 下载之前,需先查看兼容的Hadoop版本,并安装hadoop,参考 http://www.cnblogs.com/yong ...
- 数组、Set对象的互相转换
一.数组与Set对象之间的转换可以实现数组的去重(数组可重复,Set不可重复) 1. 把数组对象转换为Set对象 var arr = [1,2,3,4,5,6,7,6,6,7]; console.lo ...
- 移动应用安全开发指南(Android)--数据验证
概述 移动应用往往通过数据的发送.接收和处理来完成一系列功能,通常情况下,处理的数据绝大部分都来源于外部(比如网络.内部或外部存储和用户输入等),对这些数据处理不当会导致各种各样的漏洞和风险,比代码执 ...
- hdu4035之经典慨率DP
Maze Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Submi ...
- 【java】【mybatis】在使用mybatis进行批量插入,批量更新等批量操作时,切割In集合List进行分批批量操作的java中的切割代码
红字部分代表mybatis的批量操作调用方法: int num = 0; int maxLength = 200; int size = usableCodes.size(); if (size &l ...