1.Series  Series是一个一维数组

pandas会默认从0开始作为Series的index

>>> test = pd.Series(['num0','num1','num2','num3'])
>>> test
0 num0
1 num1
2 num2
3 num3
dtype: object

也可以自己指定index

>>> test = pd.Series(['num0','num1','num2','num3'],index=['A','B','C','D'])
>>> test
A num0
B num1
C num2
D num3
dtype: object

Series还可以用dictionary来构造一个Series

>>> cities = {'beijing':55000,'shanghai':60000,'shenzhen':20000,'guangzhou':25000,'suzhou':None}
>>> test = pd.Series(cities)
>>> test
beijing 55000.0
guangzhou 25000.0
shanghai 60000.0
shenzhen 20000.0
suzhou NaN
dtype: float64
>>> print type(test)
<class 'pandas.core.series.Series'>
>>> test['beijing']
55000.0
>>> test[['beijing','shanghai','shenzhen']]
beijing 55000.0
shanghai 60000.0
shenzhen 20000.0
dtype: float64

2.DataFrame DataFrame是一个二维的数组 DataFrame可以由一个dictionary构造得到

创建DataFrame

>>> data = {'city':['beijing','shanghai','guangzhou','shenzhen','hangzhou','chognqing'],'years':[2010,2011,2012,2013,2014,2015],'population':[2100,2300,2400,2500,
>>> print data
{'city': ['beijing', 'shanghai', 'guangzhou', 'shenzhen', 'hangzhou', 'chognqing'], 'population': [2100, 2300, 2400, 2500, 2600, 2600], 'years': [2010, 2011, 2012, 2013, 2014, 2015]}
>>> pd.DataFrame(data)
city population years
0 beijing 2100 2010
1 shanghai 2300 2011
2 guangzhou 2400 2012
3 shenzhen 2500 2013
4 hangzhou 2600 2014
5 chognqing 2600 2015

调整列的排序和行的名称

>>> pd.DataFrame(data,columns= ['years','city','population'])
years city population
0 2010 beijing 2100
1 2011 shanghai 2300
2 2012 guangzhou 2400
3 2013 shenzhen 2500
4 2014 hangzhou 2600
5 2015 chognqing 2600
>>> pd.DataFrame(data,columns= ['years','city','population'],index = ['A','B','C','D','E','F'])
years city population
A 2010 beijing 2100
B 2011 shanghai 2300
C 2012 guangzhou 2400
D 2013 shenzhen 2500
E 2014 hangzhou 2600
F 2015 chognqing 2600
>>>

DataFrame的每一个列,每一行都是一个Series

>>> mmap = pd.DataFrame(data,columns= ['years','city','population'],index = ['A','B','C','D','E','F'])
>>> print mmap
years city population
A 2010 beijing 2100
B 2011 shanghai 2300
C 2012 guangzhou 2400
D 2013 shenzhen 2500
E 2014 hangzhou 2600
F 2015 chognqing 2600
>>> type(mmap)
<class 'pandas.core.frame.DataFrame'>
>>> type(mmap['city'])
<class 'pandas.core.series.Series'>
>>>
>>> mmap.ix['C']
years 2012
city guangzhou
population 2400
Name: C, dtype: object
>>> type(mmap.ix['C'])
<class 'pandas.core.series.Series'>

DataFrame的赋值操作

>>> mmap['population']['A']
2100
>>> mmap['population']['A'] = 2000
__main__:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
>>> mmap['population']['A']
2000
>>> mmap['years'] = 2017
>>> mmap
years city population
A 2017 beijing 2000
B 2017 shanghai 2300
C 2017 guangzhou 2400
D 2017 shenzhen 2500
E 2017 hangzhou 2600
F 2017 chognqing 2600
>>>

赋值操作

>>> mmap.years = np.arange(6)
>>> mmap
years city population
A 0 beijing 2000
B 1 shanghai 2300
C 2 guangzhou 2400
D 3 shenzhen 2500
E 4 hangzhou 2600
F 5 chognqing 2600
>>> val = pd.Series([200,300,400],index=['A','B','C'])
>>> val
A 200
B 300
C 400
dtype: int64
>>> mmap['year] = val
File "<stdin>", line 1
mmap['year] = val
^
SyntaxError: EOL while scanning string literal
>>> mmap['year'] = val
>>> mmap
years city population year
A 0 beijing 2000 200.0
B 1 shanghai 2300 300.0
C 2 guangzhou 2400 400.0
D 3 shenzhen 2500 NaN
E 4 hangzhou 2600 NaN
F 5 chognqing 2600 NaN
>>> mmap['years'] = 2017
>>> mmap
years city population year
A 2017 beijing 2000 200.0
B 2017 shanghai 2300 300.0
C 2017 guangzhou 2400 400.0
D 2017 shenzhen 2500 NaN
E 2017 hangzhou 2600 NaN
F 2017 chognqing 2600 NaN
>>> mmap.columns
Index([u'years', u'city', u'population', u'year'], dtype='object')
>>> mmap.index
Index([u'A', u'B', u'C', u'D', u'E', u'F'], dtype='object')











python之pandas&&DataFrame的更多相关文章

  1. python之pandas&&DataFrame(二)

    简单操作 Python-层次聚类-Hierarchical clustering >>> data = pd.Series(np.random.randn(10),index=[[' ...

  2. Python中pandas dataframe删除一行或一列:drop函数

    用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 参数说明:labels 就是要删除的行列的 ...

  3. 【338】Pandas.DataFrame

    Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: C ...

  4. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  5. Python pandas DataFrame操作

    1. 从字典创建Dataframe >>> import pandas as pd >>> dict1 = {'col1':[1,2,5,7],'col2':['a ...

  6. Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  7. 如何通过Elasticsearch Scroll快速取出数据,构造pandas dataframe — Python多进程实现

    首先,python 多线程不能充分利用多核CPU的计算资源(只能共用一个CPU),所以得用多进程.笔者从3.7亿数据的索引,取200多万的数据,从取数据到构造pandas dataframe总共大概用 ...

  8. Python时间处理,datetime中的strftime/strptime+pandas.DataFrame.pivot_table(像groupby之类 的操作)

    python中datetime模块非常好用,提供了日期格式和字符串格式相互转化的函数strftime/strptime 1.由日期格式转化为字符串格式的函数为: datetime.datetime.s ...

  9. python中pandas里面的dataframe数据的筛选小结

    pandas大家用的都很多,像我这种用的不够熟练,也不够多的就只能做做笔记,尽量留下点东西吧. 筛选行: a. 按照列的条件筛选 df = pandas.DataFrame(...) # suppos ...

随机推荐

  1. SQL中的替换函数replace()使用

    语法REPLACE ( string_expression , string_pattern , string_replacement ) 参数string_expression 要搜索的字符串表达式 ...

  2. 并发时-修改Linux系统下的最大文件描述符限制

    通常我们通过终端连接到linux系统后执行ulimit -n 命令可以看到本次登录的session其文件描述符的限制,如下: $ulimit -n1024 当然可以通过ulimit -SHn 1024 ...

  3. 【bzoj4810】【ynoi2018】由乃的玉米田

    4810: [Ynoi2017]由乃的玉米田 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 1090  Solved: 524[Submit][Sta ...

  4. 使用Java解析XML文件或XML字符串的例子

    转: 使用Java解析XML文件或XML字符串的例子 2017年09月16日 11:36:18 inter_peng 阅读数:4561 标签: JavaXML-Parserdom4j 更多 个人分类: ...

  5. web项目引用tomcat中的jar

    web项目引用tomcat中的jar https://blog.csdn.net/zjsdrs/article/details/77868827 如下图所示

  6. [Java多线程]-Thread和Runable源码解析

    多线程:(百度百科借一波定义) 多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提 ...

  7. CS48 D BIT

    统计一个点对应的和它严格右下方的点,点对数量.由于数据规模很大,不能直接上二维的前缀和,先排一维序,然后用BIT维护前缀和即可. /** @Date : 2017-09-14 20:17:30 * @ ...

  8. ZOJ 3774 二次剩余

    LINK 题意:简单粗暴,求菲波那契数列每个数的m次的前n项和模1e9+7 思路:斐波那契通项式, 注意到有很多根号5,求二次剩余为5模1e9+7的解,显然我们可以直接找一个(383008016),然 ...

  9. ClassNotFoundException:com.sun.xml.bind.v2.ContextFactory

    项目中引入hive-jdbc-1.2.1-standalone.jar包之后,报错如下: Caused by: javax.xml.bind.JAXBException: Provider com.s ...

  10. 关于NuGet

    一.NuGet是什么? NuGet是Microsoft开发平台的程序集包管理器,它由客户端工具和服务端站点组成,客户端工具提供给用户管理和安装/卸载软件程序包,以及打包和发布程序包到NuGet服务端站 ...