Hive 优化

1.核心思想:

把Hive SQL 当做Mapreduce程序去优化
以下SQL不会转为Mapreduce来执行
select仅查询本表字段
where仅对本表字段做条件过滤
 
Explain 显示执行计划
EXPLAIN [EXTENDED] query

2.Hive运行方式:

本地模式
集群模式
 

2.1开启本地模式:

set hive.exec.mode.local.auto=true;

2.2注意:

hive.exec.mode.local.auto.inputbytes.max  #默认值为128M
表示加载文件的最大值,若大于该配置仍会以集群方式来运行!

3.并行计算

通过设置以下参数开启并行模式:
set hive.exec.parallel=true;
注意:hive.exec.parallel.thread.number=xxxxx
(一次SQL计算中允许并行执行的job个数的最大值)

4.严格模式

4.1通过设置以下参数开启严格模式:

set hive.mapred.mode=strict;
(默认为:nonstrict非严格模式)

4.2查询限制:

1、对于分区表,必须添加where对于分区字段的条件过滤;
2、order by语句必须包含limit输出限制;
3、限制执行笛卡尔积的查询。

5.Hive排序

Order By - 对于查询结果做全排序,只允许有一个reduce处理(当数据量较大时,应慎用。严格模式下,必须结合limit来使用)
Sort By - 对于单个reduce的数据进行排序
Distribute By - 分区排序,经常和Sort By结合使用
Cluster By - 相当于 Sort By + Distribute By(Cluster By不能通过asc、desc的方式指定排序规则;
可通过 distribute by column sort by column asc|desc 的方式)

6.Hive Join

Join计算时,将小表(驱动表)放在join的左边
Map Join:在Map端完成Join
两种实现方式:

SQL方式,在SQL语句中添加MapJoin标记(mapjoin hint)

语法:
SELECT  /*+ MAPJOIN(smallTable) */  smallTable.key,  bigTable.value
FROM smallTable JOIN bigTable ON smallTable.key = bigTable.key;

开启自动的MapJoin

通过修改以下配置启用自动的mapjoin:
set hive.auto.convert.join = true;
(该参数为true时,Hive自动对左边的表统计量,如果是小表就加入内存,即对小表使用Map join)
相关配置参数:

大表小表判断的阈值,如果表的大小小于该值则会被加载到内存中运行

hive.mapjoin.smalltable.filesize;   

默认值:true;是否忽略mapjoin hint 即mapjoin标记

hive.ignore.mapjoin.hint;

默认值:true;将普通的join转化为普通的mapjoin时,是否将多个mapjoin转化为一个mapjoin

hive.auto.convert.join.noconditionaltask;  

6.6将多个mapjoin转化为一个mapjoin时,其表的最大值

hive.auto.convert.join.noconditionaltask.size;    
 

7.Map-Side聚合

7.0通过设置以下参数开启在Map端的聚合:

set hive.map.aggr=true;
相关配置参数:

map端group by执行聚合时处理的多少行数据(默认:100000)

hive.groupby.mapaggr.checkinterval;

进行聚合的最小比例(预先对100000条数据做聚合,若聚合之后的数据量/100000的值大于该配置0.5,则不会聚合)

hive.map.aggr.hash.min.reduction:

map端聚合使用的内存的最大值

hive.map.aggr.hash.percentmemory:

map端做聚合操作是hash表的最大可用内容,大于该值则会触发flush

hive.map.aggr.hash.force.flush.memory.threshold:

是否对GroupBy产生的数据倾斜做优化,默认为false

hive.groupby.skewindata

8.控制Hive中Map以及Reduce的数量

8.1Map数量相关的参数

一个split的最大值,即每个map处理文件的最大值

mapred.max.split.size
 
一个节点上split的最小值
mapred.min.split.size.per.node
一个机架上split的最小值
mapred.min.split.size.per.rack

8.2Reduce数量相关的参数

强制指定reduce任务的数量
mapred.reduce.tasks
每个reduce任务处理的数据量
hive.exec.reducers.bytes.per.reducer
每个任务最大的reduce数
hive.exec.reducers.max

9.Hive - JVM重用

9.1适用场景:

1、小文件个数过多
2、task个数过多
通过下面参数来设置
set mapred.job.reuse.jvm.num.tasks=n; 
(n为task插槽个数)

9.2缺点:

设置开启之后,task插槽会一直占用资源,不论是否有task运行,直到所有的task即整个job全部执行完成时,才会释放所有的task插槽资源!

hive学习(八)hive优化的更多相关文章

  1. hive学习(二) hive操作

    hive   ddl 操作官方手册https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL hive  dml 操作官方手 ...

  2. hive学习(四) hive的函数

    1.内置运算符 1.1关系运算符 运算符 类型 说明 A = B 所有原始类型 如果A与B相等,返回TRUE,否则返回FALSE A == B 无 失败,因为无效的语法. SQL使用”=”,不使用”= ...

  3. hive学习(三) hive的分区

    1.Hive 分区partition 必须在表定义时指定对应的partition字段 a.单分区建表语句: create table day_table (id int, content string ...

  4. Hive学习笔记——Hive中的分桶

    对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记 ...

  5. Hive学习:Hive连接JOIN用例详解

    1 准备数据: 1.1 t_1 01 张三 02 李四 03 王五 04 马六 05 小七 06 二狗 1.2 t_2 01 11 03 33 04 44 06 66 07 77 08 88 1.3 ...

  6. Hive学习 系列博客

    原 Hive作业优化 原 Hive学习六:HIVE日志分析(用户画像) 原 Hive学习五--日志案例分析 原 Hive学习三 原 Hive学习二 原 Hive学习一 博客来源,https://blo ...

  7. hive学习

    大数据的仓库Hive学习  10期-崔晓光 2016-06-20  大数据   hadoop   10原文链接 我们接着之前学习的大数据来学习.之前说到了NoSql的HBase数据库以及Hadoop中 ...

  8. Hive学习路线图(转)

    Hadoophivehqlroadmap学习路线图   1 Comment Hive学习路线图 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig ...

  9. 【转】Hive学习路线图

    原文博客出自于:http://blog.fens.me/hadoop-hive-roadmap/ 感谢! Hive学习路线图 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Ha ...

  10. Hive学习路线图--张丹老师

    前言 Hive是Hadoop家族中一款数据仓库产品,Hive最大的特点就是提供了类SQL的语法,封装了底层的MapReduce过程,让有SQL基础的业务人员,也可以直接利用Hadoop进行大数据的操作 ...

随机推荐

  1. 利用MailSniper越权访问Exchange邮箱

    0x01 概述 Microsoft Exchange用户可以授权给其他用户对其邮箱文件夹进行各种级别的访问.例如,用户可以授予其他用户读取访问其收件箱中里面的电子邮件,但是要是用户(或Exchange ...

  2. 在 Xamarin.Forms 实现页面全屏显示

    NavigationPage.SetHasNavigationBar(this, false); 或者 <ContentPage ... NavigationPage.HasNavigation ...

  3. poj3469 Dual Core CPU

    Dual Core CPU Time Limit: 15000MS   Memory Limit: 131072K Total Submissions: 25576   Accepted: 11033 ...

  4. [线索二叉树] [LeetCode] 不需要栈或者别的辅助空间,完成二叉树的中序遍历。题:Recover Binary Search Tree,Binary Tree Inorder Traversal

    既上篇关于二叉搜索树的文章后,这篇文章介绍一种针对二叉树的新的中序遍历方式,它的特点是不需要递归或者使用栈,而是纯粹使用循环的方式,完成中序遍历. 线索二叉树介绍 首先我们引入“线索二叉树”的概念: ...

  5. LintCode 508: Wiggle Sort

    LintCode 508: Wiggle Sort 题目描述 给你一个没有排序的数组,请将原数组就地重新排列满足如下性质 nums[0] <= nums[1] >= nums[2] < ...

  6. 面向对象 ( OO ) 的程序设计——继承

    本文地址:http://www.cnblogs.com/veinyin/p/7608282.html  仅支持实现继承,且主要依靠原型链来实现,不过一般会混合构造函数一起实现继承 1 原型链 继承使用 ...

  7. js 给指定ID赋值

    js 给指定ID赋值 <script language="javascript" type="text/javascript"> document. ...

  8. 旅游(CSUST省赛选拔赛2+状压dp+最短路)

    题目链接:http://csustacm.com:4803/problem/1016 题目: 思路:状压dp+最短路,比赛的时候有想到状压dp,但是最短路部分写挫了,然后就卡死了,对不起出题人~dis ...

  9. BERT(Bidirectional Encoder Representations from Transformers)理解

    BERT的新语言表示模型,它代表Transformer的双向编码器表示.与最近的其他语言表示模型不同,BERT旨在通过联合调节所有层中的上下文来预先训练深度双向表示.因此,预训练的BERT表示可以通过 ...

  10. PHP代码审计学习

    原文:http://paper.tuisec.win/detail/1fa2683bd1ca79c 作者:June 这是一次分享准备.自己还没有总结这个的能力,这次就当个搬运工好了~~ 0x01 工具 ...